UNPKG

@stdlib/stats

Version:

Standard library statistical functions.

194 lines (177 loc) 5.7 kB
/** * @license Apache-2.0 * * Copyright (c) 2018 The Stdlib Authors. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ 'use strict'; // MODULES // var isNumberArray = require( '@stdlib/assert/is-number-array' ).primitives; var isTypedArrayLike = require( '@stdlib/assert/is-typed-array-like' ); var setReadOnly = require( '@stdlib/utils/define-read-only-property' ); var quantileFactory = require( './../../base/dists/normal/quantile' ).factory; var cdfFactory = require( './../../base/dists/normal/cdf' ).factory; var format = require( '@stdlib/string/format' ); var atanh = require( '@stdlib/math/base/special/atanh' ); var tanh = require( '@stdlib/math/base/special/tanh' ); var tCDF = require( './../../base/dists/t/cdf' ); var sqrt = require( '@stdlib/math/base/special/sqrt' ); var min = require( '@stdlib/math/base/special/min' ); var print = require( './print.js' ); // eslint-disable-line stdlib/no-redeclare var pcorr = require( './pcorr.js' ); var validate = require( './validate.js' ); // VARIABLES // var normQuantile = quantileFactory( 0.0, 1.0 ); var normCDF = cdfFactory( 0.0, 1.0 ); // MAIN // /** * Computes a Pearson product-moment correlation test between paired samples. * * @param {NumericArray} x - first data array * @param {NumericArray} y - second data array * @param {Options} [options] - function options * @param {number} [options.alpha=0.05] - significance level * @param {string} [options.alternative='two-sided'] - alternative hypothesis (`two-sided`, `less` or `greater`) * @param {number} [options.rho=0.0] - correlation under H0 * @throws {TypeError} first argument has to be a typed array or array of numbers * @throws {TypeError} second argument has to be a typed array or array of numbers * @throws {RangeError} first and second arguments must have the same length * @throws {Error} first and second arguments must be arrays having the same length * @throws {Error} first and second arguments must contain at least four elements * @throws {TypeError} options must be an object * @throws {TypeError} must provide valid options * @returns {Object} test result object * * @example * var x = [ 2, 4, 3, 1, 2, 3 ]; * var y = [ 3, 2, 4, 1, 2, 4 ]; * var out = pcorrTest( x, y ); */ function pcorrTest( x, y, options ) { var method; var alpha; var cint; var opts; var pval; var stat; var alt; var err; var out; var rho; var val; var df; var se; var n; var r; var z; if ( !isTypedArrayLike( x ) && !isNumberArray( x ) ) { throw new TypeError( format( 'invalid argument. First argument must be a numeric array. Value: `%s`.', x ) ); } if ( !isTypedArrayLike( y ) && !isNumberArray( y ) ) { throw new TypeError( format( 'invalid argument. Second argument must be a numeric array. Value: `%s`.', y ) ); } n = x.length; if ( n !== y.length ) { throw new RangeError( 'invalid arguments. First and second arguments must be arrays having the same length.' ); } opts = {}; if ( options ) { err = validate( opts, options ); if ( err ) { throw err; } } if ( opts.alpha === void 0 ) { alpha = 0.05; } else { alpha = opts.alpha; } if ( n < 4 ) { throw new Error( 'invalid arguments. Not enough observations. First and second arguments must contain at least four observations.' ); } if ( opts.rho === void 0 ) { rho = 0.0; } else { rho = opts.rho; } if ( opts.alternative === void 0 ) { alt = 'two-sided'; } else { alt = opts.alternative; } r = pcorr( x, y ); z = atanh( r ); se = 1.0 / sqrt( n - 3 ); if ( rho === 0.0 ) { // Use t-test for H0: rho = 0.0 vs H1: rho != 0.0... method = 't-test for Pearson correlation coefficient'; df = n - 2; stat = sqrt( df ) * r / sqrt( 1.0 - (r*r) ); switch ( alt ) { case 'greater': pval = 1.0 - tCDF( stat, df ); break; case 'less': pval = tCDF( stat, df ); break; case 'two-sided': default: pval = 2.0 * min( tCDF( stat, df), 1.0 - tCDF( stat, df ) ); break; } } else { // Use large-sample normality to calculate p-value based on Fisher's z transform... method = 'Fisher\'s z transform test for Pearson correlation coefficient'; stat = ( z - atanh( rho ) ) * sqrt( n - 3 ); switch ( alt ) { case 'greater': pval = normCDF( -stat ); break; case 'less': pval = 1.0 - normCDF( -stat ); break; case 'two-sided': default: pval = 2.0 * min( normCDF( -stat ), 1.0 - normCDF( -stat ) ); break; } } switch ( alt ) { case 'greater': cint = [ tanh( z - ( se*normQuantile( 1.0 - alpha ) ) ), 1.0 ]; break; case 'less': cint = [ -1.0, tanh( z + ( se*normQuantile( 1.0 - alpha ) ) ) ]; break; case 'two-sided': default: val = se * normQuantile( 1.0 - ( alpha/2.0 ) ); cint = [ tanh( z - val ), tanh( z + val ) ]; break; } out = {}; setReadOnly( out, 'rejected', pval <= alpha ); setReadOnly( out, 'alpha', alpha ); setReadOnly( out, 'pValue', pval ); setReadOnly( out, 'statistic', stat ); setReadOnly( out, 'ci', cint ); setReadOnly( out, 'alternative', alt ); setReadOnly( out, 'method', method ); setReadOnly( out, 'nullValue', rho ); setReadOnly( out, 'pcorr', r ); setReadOnly( out, 'print', print ); return out; } // EXPORTS // module.exports = pcorrTest;