UNPKG

@stdlib/stats

Version:

Standard library statistical functions.

97 lines (88 loc) 2.91 kB
/* * @license Apache-2.0 * * Copyright (c) 2021 The Stdlib Authors. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ // TypeScript Version: 4.1 /// <reference types="@stdlib/types"/> import { ndarray } from '@stdlib/types/ndarray'; /** * If provided a data vector, the accumulator function returns an updated unbiased sample covariance matrix. If not provided a data vector, the accumulator function returns the current unbiased sample covariance matrix. * * @param vector - data vector * @throws must provide a 1-dimensional ndarray * @throws vector length must match covariance matrix dimensions * @returns unbiased sample covariance matrix or null */ type accumulator = ( vector?: ndarray ) => ndarray | null; /** * Returns an accumulator function which incrementally computes an unbiased sample covariance matrix. * * @param out - order of the covariance matrix or a square 2-dimensional output ndarray for storing the covariance matrix * @param means - mean values * @throws first argument must be either a positive integer or a 2-dimensional ndarray having equal dimensions * @throws second argument must be a 1-dimensional ndarray * @throws number of means must match covariance matrix dimensions * @returns accumulator function * * @example * var Float64Array = require( '@stdlib/array/float64' ); * var ndarray = require( '@stdlib/ndarray/ctor' ); * * // Create an output covariance matrix: * var buffer = new Float64Array( 4 ); * var shape = [ 2, 2 ]; * var strides = [ 2, 1 ]; * var offset = 0; * var order = 'row-major'; * * var cov = ndarray( 'float64', buffer, shape, strides, offset, order ); * * // Create a covariance matrix accumulator: * var accumulator = incrcovmat( cov ); * * var out = accumulator(); * // returns null * * // Create a data vector: * buffer = new Float64Array( 2 ); * shape = [ 2 ]; * strides = [ 1 ]; * * var vec = ndarray( 'float64', buffer, shape, strides, offset, order ); * * // Provide data to the accumulator: * vec.set( 0, 2.0 ); * vec.set( 1, 1.0 ); * * out = accumulator( vec ); * // returns <ndarray> * * var bool = ( out === cov ); * // returns true * * vec.set( 0, -5.0 ); * vec.set( 1, 3.14 ); * * out = accumulator( vec ); * // returns <ndarray> * * // Retrieve the covariance matrix: * out = accumulator(); * // returns <ndarray> */ declare function incrcovmat( out: number | ndarray, means?: ndarray ): accumulator; // EXPORTS // export = incrcovmat;