UNPKG

@stdlib/stats

Version:

Standard library statistical functions.

228 lines (142 loc) 7.74 kB
<!-- @license Apache-2.0 Copyright (c) 2020 The Stdlib Authors. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. --> # snanmeanors > Calculate the [arithmetic mean][arithmetic-mean] of a single-precision floating-point strided array, ignoring `NaN` values and using ordinary recursive summation. <section class="intro"> The [arithmetic mean][arithmetic-mean] is defined as <!-- <equation class="equation" label="eq:arithmetic_mean" align="center" raw="\mu = \frac{1}{n} \sum_{i=0}^{n-1} x_i" alt="Equation for the arithmetic mean."> --> <div class="equation" align="center" data-raw-text="\mu = \frac{1}{n} \sum_{i=0}^{n-1} x_i" data-equation="eq:arithmetic_mean"> <img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@8aea2a0cdd426388aeb325d5711205df9b5bd1af/lib/node_modules/@stdlib/stats/base/snanmeanors/docs/img/equation_arithmetic_mean.svg" alt="Equation for the arithmetic mean."> <br> </div> <!-- </equation> --> </section> <!-- /.intro --> <section class="usage"> ## Usage ```javascript var snanmeanors = require( '@stdlib/stats/base/snanmeanors' ); ``` #### snanmeanors( N, x, stride ) Computes the [arithmetic mean][arithmetic-mean] of a single-precision floating-point strided array `x`, ignoring `NaN` values and using ordinary recursive summation. ```javascript var Float32Array = require( '@stdlib/array/float32' ); var x = new Float32Array( [ 1.0, -2.0, NaN, 2.0 ] ); var N = x.length; var v = snanmeanors( N, x, 1 ); // returns ~0.3333 ``` The function has the following parameters: - **N**: number of indexed elements. - **x**: input [`Float32Array`][@stdlib/array/float32]. - **stride**: index increment for `x`. The `N` and `stride` parameters determine which elements in `x` are accessed at runtime. For example, to compute the [arithmetic mean][arithmetic-mean] of every other element in `x`, ```javascript var Float32Array = require( '@stdlib/array/float32' ); var floor = require( '@stdlib/math/base/special/floor' ); var x = new Float32Array( [ 1.0, 2.0, 2.0, -7.0, -2.0, 3.0, 4.0, 2.0, NaN ] ); var N = floor( x.length / 2 ); var v = snanmeanors( N, x, 2 ); // returns 1.25 ``` Note that indexing is relative to the first index. To introduce an offset, use [`typed array`][mdn-typed-array] views. <!-- eslint-disable stdlib/capitalized-comments --> ```javascript var Float32Array = require( '@stdlib/array/float32' ); var floor = require( '@stdlib/math/base/special/floor' ); var x0 = new Float32Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0, NaN ] ); var x1 = new Float32Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element var N = floor( x0.length / 2 ); var v = snanmeanors( N, x1, 2 ); // returns 1.25 ``` #### snanmeanors.ndarray( N, x, stride, offset ) Computes the [arithmetic mean][arithmetic-mean] of a single-precision floating-point strided array, ignoring `NaN` values and using ordinary recursive summation and alternative indexing semantics. ```javascript var Float32Array = require( '@stdlib/array/float32' ); var x = new Float32Array( [ 1.0, -2.0, NaN, 2.0 ] ); var N = x.length; var v = snanmeanors.ndarray( N, x, 1, 0 ); // returns ~0.33333 ``` The function has the following additional parameters: - **offset**: starting index for `x`. While [`typed array`][mdn-typed-array] views mandate a view offset based on the underlying `buffer`, the `offset` parameter supports indexing semantics based on a starting index. For example, to calculate the [arithmetic mean][arithmetic-mean] for every other value in `x` starting from the second value ```javascript var Float32Array = require( '@stdlib/array/float32' ); var floor = require( '@stdlib/math/base/special/floor' ); var x = new Float32Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0, NaN ] ); var N = floor( x.length / 2 ); var v = snanmeanors.ndarray( N, x, 2, 1 ); // returns 1.25 ``` </section> <!-- /.usage --> <section class="notes"> ## Notes - If `N <= 0`, both functions return `NaN`. - If every indexed element is `NaN`, both functions return `NaN`. - Ordinary recursive summation (i.e., a "simple" sum) is performant, but can incur significant numerical error. If performance is paramount and error tolerated, using ordinary recursive summation to compute an arithmetic mean is acceptable; in all other cases, exercise due caution. </section> <!-- /.notes --> <section class="examples"> ## Examples <!-- eslint no-undef: "error" --> ```javascript var randu = require( '@stdlib/random/base/randu' ); var round = require( '@stdlib/math/base/special/round' ); var Float32Array = require( '@stdlib/array/float32' ); var snanmeanors = require( '@stdlib/stats/base/snanmeanors' ); var x; var i; x = new Float32Array( 10 ); for ( i = 0; i < x.length; i++ ) { if ( randu() < 0.2 ) { x[ i ] = NaN; } else { x[ i ] = round( (randu()*100.0) - 50.0 ); } } console.log( x ); var v = snanmeanors( x.length, x, 1 ); console.log( v ); ``` </section> <!-- /.examples --> <section class="references"> </section> <!-- /.references --> <!-- Section for related `stdlib` packages. Do not manually edit this section, as it is automatically populated. --> <section class="related"> * * * ## See Also - <span class="package-name">[`@stdlib/stats/base/dnanmeanors`][@stdlib/stats/base/dnanmeanors]</span><span class="delimiter">: </span><span class="description">calculate the arithmetic mean of a double-precision floating-point strided array, ignoring NaN values and using ordinary recursive summation.</span> - <span class="package-name">[`@stdlib/stats/base/nanmeanors`][@stdlib/stats/base/nanmeanors]</span><span class="delimiter">: </span><span class="description">calculate the arithmetic mean of a strided array, ignoring NaN values and using ordinary recursive summation.</span> - <span class="package-name">[`@stdlib/stats/base/smeanors`][@stdlib/stats/base/smeanors]</span><span class="delimiter">: </span><span class="description">calculate the arithmetic mean of a single-precision floating-point strided array using ordinary recursive summation.</span> - <span class="package-name">[`@stdlib/stats/base/snanmean`][@stdlib/stats/base/snanmean]</span><span class="delimiter">: </span><span class="description">calculate the arithmetic mean of a single-precision floating-point strided array, ignoring NaN values.</span> </section> <!-- /.related --> <!-- Section for all links. Make sure to keep an empty line after the `section` element and another before the `/section` close. --> <section class="links"> [arithmetic-mean]: https://en.wikipedia.org/wiki/Arithmetic_mean [@stdlib/array/float32]: https://www.npmjs.com/package/@stdlib/array-float32 [mdn-typed-array]: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/TypedArray <!-- <related-links> --> [@stdlib/stats/base/dnanmeanors]: https://github.com/stdlib-js/stats/tree/main/base/dnanmeanors [@stdlib/stats/base/nanmeanors]: https://github.com/stdlib-js/stats/tree/main/base/nanmeanors [@stdlib/stats/base/smeanors]: https://github.com/stdlib-js/stats/tree/main/base/smeanors [@stdlib/stats/base/snanmean]: https://github.com/stdlib-js/stats/tree/main/base/snanmean <!-- </related-links> --> </section> <!-- /.links -->