UNPKG

@stdlib/stats

Version:

Standard library statistical functions.

93 lines (85 loc) 2.61 kB
/* * @license Apache-2.0 * * Copyright (c) 2020 The Stdlib Authors. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ // TypeScript Version: 4.1 /** * Interface describing `dnanmeanwd`. */ interface Routine { /** * Computes the arithmetic mean of a double-precision floating-point strided array, using Welford's algorithm and ignoring `NaN` values. * * @param N - number of indexed elements * @param x - input array * @param stride - stride length * @returns arithmetic mean * * @example * var Float64Array = require( '@stdlib/array/float64' ); * * var x = new Float64Array( [ 1.0, -2.0, NaN, 2.0 ] ); * * var v = dnanmeanwd( x.length, x, 1 ); * // returns ~0.3333 */ ( N: number, x: Float64Array, stride: number ): number; /** * Computes the arithmetic mean of a double-precision floating-point strided array, ignoring `NaN` values and using Welford's algorithm and alternative indexing semantics. * * @param N - number of indexed elements * @param x - input array * @param stride - stride length * @param offset - starting index * @returns arithmetic mean * * @example * var Float64Array = require( '@stdlib/array/float64' ); * * var x = new Float64Array( [ 1.0, -2.0, NaN, 2.0 ] ); * * var v = dnanmeanwd.ndarray( x.length, x, 1, 0 ); * // returns ~0.3333 */ ndarray( N: number, x: Float64Array, stride: number, offset: number ): number; } /** * Computes the arithmetic mean of a double-precision floating-point strided array, using Welford's algorithm and ignoring `NaN` values. * * @param N - number of indexed elements * @param x - input array * @param stride - stride length * @returns arithmetic mean * * @example * var Float64Array = require( '@stdlib/array/float64' ); * * var x = new Float64Array( [ 1.0, -2.0, NaN, 2.0 ] ); * * var v = dnanmeanwd( x.length, x, 1 ); * // returns ~0.3333 * * @example * var Float64Array = require( '@stdlib/array/float64' ); * * var x = new Float64Array( [ 1.0, -2.0, NaN, 2.0 ] ); * * var v = dnanmeanwd.ndarray( x.length, x, 1, 0 ); * // returns ~0.3333 */ declare var dnanmeanwd: Routine; // EXPORTS // export = dnanmeanwd;