UNPKG

@stdlib/stats

Version:

Standard library statistical functions.

107 lines (99 loc) 3.39 kB
/* * @license Apache-2.0 * * Copyright (c) 2020 The Stdlib Authors. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ // TypeScript Version: 4.1 /** * Interface describing `dmeanvarpn`. */ interface Routine { /** * Computes the mean and variance of a double-precision floating-point strided array using a two-pass algorithm. * * @param N - number of indexed elements * @param correction - degrees of freedom adjustment * @param x - input array * @param strideX - `x` stride length * @param out - output array * @param strideOut - `out` stride length * @returns output array * * @example * var Float64Array = require( '@stdlib/array/float64' ); * * var x = new Float64Array( [ 1.0, -2.0, 2.0 ] ); * var out = new Float64Array( 2 ); * * var v = dmeanvarpn( x.length, 1, x, 1, out, 1 ); * // returns <Float64Array>[ ~0.3333, ~4.3333 ] */ ( N: number, correction: number, x: Float64Array, strideX: number, out: Float64Array, strideOut: number ): Float64Array; /** * Computes the mean and variance of a double-precision floating-point strided array using a two-pass algorithm and alternative indexing semantics. * * @param N - number of indexed elements * @param correction - degrees of freedom adjustment * @param x - input array * @param strideX - `x` stride length * @param offsetX - `x` starting index * @param out - output array * @param strideOut - `out` stride length * @param offsetOut - `out` starting index * @returns output array * * @example * var Float64Array = require( '@stdlib/array/float64' ); * * var x = new Float64Array( [ 1.0, -2.0, 2.0 ] ); * var out = new Float64Array( 2 ); * * var v = dmeanvarpn.ndarray( x.length, 1, x, 1, 0, out, 1, 0 ); * // returns <Float64Array>[ ~0.3333, ~4.3333 ] */ ndarray( N: number, correction: number, x: Float64Array, strideX: number, offsetX: number, out: Float64Array, strideOut: number, offsetOut: number ): Float64Array; } /** * Computes the mean and variance of a double-precision floating-point strided array using a two-pass algorithm. * * @param N - number of indexed elements * @param correction - degrees of freedom adjustment * @param x - input array * @param strideX - `x` stride length * @param out - output array * @param strideOut - `out` stride length * @returns output array * * @example * var Float64Array = require( '@stdlib/array/float64' ); * * var x = new Float64Array( [ 1.0, -2.0, 2.0 ] ); * var out = new Float64Array( 2 ); * * var v = dmeanvarpn( x.length, 1, x, 1, out, 1 ); * // returns <Float64Array>[ ~0.3333, ~4.3333 ] * * @example * var Float64Array = require( '@stdlib/array/float64' ); * * var x = new Float64Array( [ 1.0, -2.0, 2.0 ] ); * var out = new Float64Array( 2 ); * * var v = dmeanvarpn.ndarray( x.length, 1, x, 1, 0, out, 1, 0 ); * // returns <Float64Array>[ ~0.3333, ~4.3333 ] */ declare var dmeanvarpn: Routine; // EXPORTS // export = dmeanvarpn;