UNPKG

@stdlib/stats

Version:

Standard library statistical functions.

97 lines (87 loc) 2.16 kB
/** * @license Apache-2.0 * * Copyright (c) 2018 The Stdlib Authors. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ 'use strict'; // MODULES // var isnan = require( '@stdlib/math/base/assert/is-nan' ); var pow = require( '@stdlib/math/base/special/pow' ); var exp = require( '@stdlib/math/base/special/exp' ); var PINF = require( '@stdlib/constants/float64/pinf' ); var NINF = require( '@stdlib/constants/float64/ninf' ); // MAIN // /** * Evaluates the probability density function (PDF) for a Weibull distribution with shape parameter `k` and scale parameter `lambda` at a value `x`. * * @param {number} x - input value * @param {PositiveNumber} k - shape parameter * @param {PositiveNumber} lambda - scale parameter * @returns {number} evaluated probability density function * * @example * var y = pdf( 2.0, 1.0, 0.5 ); * // returns ~0.037 * * @example * var y = pdf( 0.1, 1.0, 1.0 ); * // returns ~0.905 * * @example * var y = pdf( -1.0, 4.0, 2.0 ); * // returns 0.0 * * @example * var y = pdf( NaN, 0.6, 1.0 ); * // returns NaN * * @example * var y = pdf( 0.0, NaN, 1.0 ); * // returns NaN * * @example * var y = pdf( 0.0, 0.0, NaN ); * // returns NaN * * @example * var y = pdf( 2.0, 0.0, -1.0 ); * // returns NaN */ function pdf( x, k, lambda ) { var xol; var z; if ( isnan( k ) || isnan( lambda ) || k <= 0.0 || lambda <= 0.0 ) { return NaN; } if ( x < 0.0 ) { return 0.0; } if ( x === PINF || x === NINF ) { return 0.0; } if ( x === 0.0 ) { return ( k === 1.0 ) ? k/lambda : 0.0; } xol = x / lambda; z = pow( xol, k - 1.0 ); return ( k / lambda ) * z * exp( -pow( xol, k ) ); } // EXPORTS // module.exports = pdf;