@stdlib/stats
Version:
Standard library statistical functions.
167 lines (108 loc) • 5.19 kB
Markdown
<!--
@license Apache-2.0
Copyright (c) 2018 The Stdlib Authors.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
-->
# Probability Density Function
> [Truncated normal][truncated-normal-distribution] distribution probability density function (PDF).
<section class="intro">
A normally distributed random variable `X` conditional on `a < X < b` is called a [truncated normal][truncated-normal-distribution] distribution.
The [probability density function][pdf] (PDF) for a [truncated normal][truncated-normal-distribution] random variable is
<!-- <equation class="equation" label="eq:truncated_normal_pdf" align="center" raw="f(x;\mu,\sigma,a,b) = \begin{cases} \frac{\frac{1}{\sigma}\phi(\frac{x - \mu}{\sigma})}{\Phi(\frac{b - \mu}{\sigma}) - \Phi(\frac{a - \mu}{\sigma}) } & \text{ if } a < x < b \\ 0 & \text{ otherwise } \end{cases}" alt="Probability density function (PDF) for a truncated normal distribution."> -->
<div class="equation" align="center" data-raw-text="f(x;\mu,\sigma,a,b) = \begin{cases} \frac{\frac{1}{\sigma}\phi(\frac{x - \mu}{\sigma})}{\Phi(\frac{b - \mu}{\sigma}) - \Phi(\frac{a - \mu}{\sigma}) } & \text{ if } a < x < b \\ 0 & \text{ otherwise } \end{cases}" data-equation="eq:truncated_normal_pdf">
<img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@51534079fef45e990850102147e8945fb023d1d0/lib/node_modules/@stdlib/stats/base/dists/truncated-normal/pdf/docs/img/equation_truncated_normal_pdf.svg" alt="Probability density function (PDF) for a truncated normal distribution.">
<br>
</div>
<!-- </equation> -->
where `Phi` and `phi` denote the [cumulative distribution function][cdf] and [density function][pdf] of the [normal][normal-distribution] distribution, respectively, `mu` is the location and `sigma > 0` is the scale parameter of the distribution. `a` and `b` are the minimum and maximum support.
</section>
<!-- /.intro -->
<section class="usage">
## Usage
```javascript
var pdf = require( '@stdlib/stats/base/dists/truncated-normal/pdf' );
```
#### pdf( x, a, b, mu, sigma )
Evaluates the probability density function (PDF) for a [truncated normal][truncated-normal-distribution] distribution with lower limit `a`, upper limit `b`, location parameter `mu`, and scale parameter `sigma`.
```javascript
var y = pdf( 0.9, 0.0, 1.0, 0.0, 1.0 );
// returns ~0.7795
y = pdf( 0.9, 0.0, 1.0, 0.5, 1.0 );
// returns ~0.9617
y = pdf( 0.9, -1.0, 1.0, 0.5, 1.0 );
// returns ~0.5896
y = pdf( 1.4, 0.0, 1.0, 0.0, 1.0 );
// returns 0.0
y = pdf( -0.9, 0.0, 1.0, 0.0, 1.0 );
// returns 0.0
```
If provided `NaN` as any argument, the function returns `NaN`.
```javascript
var y = pdf( NaN, 0.0, 1.0, 0.5, 2.0 );
// returns NaN
y = pdf( 0.0, NaN, 1.0, 0.5, 2.0 );
// returns NaN
y = pdf( 0.0, 0.0, NaN, 0.5, 2.0 );
// returns NaN
y = pdf( 0.6, 0.0, 1.0, NaN, 2.0 );
// returns NaN
y = pdf( 0.6, 0.0, 1.0, 0.5, NaN );
// returns NaN
```
#### pdf.factory( a, b, mu, sigma )
Returns a function for evaluating the [probability density function][pdf] (PDF) for a [truncated normal][truncated-normal-distribution] distribution.
```javascript
var myPDF = pdf.factory( 0.0, 1.0, 0.0, 1.0 );
var y = myPDF( 0.8 );
// returns ~0.849
myPDF = pdf.factory( 0.0, 1.0, 0.5, 1.0 );
y = myPDF( 0.8 );
// returns ~0.996
```
</section>
<!-- /.usage -->
<section class="examples">
## Examples
<!-- eslint no-undef: "error" -->
```javascript
var randu = require( '@stdlib/random/base/randu' );
var pdf = require( '@stdlib/stats/base/dists/truncated-normal/pdf' );
var sigma;
var mu;
var a;
var b;
var x;
var y;
var i;
for ( i = 0; i < 25; i++ ) {
a = ( randu() * 80.0 ) - 40.0;
b = a + ( randu() * 80.0 );
x = ( randu() * 40.0 ) + a;
mu = ( randu() * 20.0 ) - 10.0;
sigma = ( randu() * 10.0 ) + 2.0;
y = pdf( x, a, b, mu, sigma );
console.log( 'x: %d, a: %d, b: %d, mu: %d, sigma: %d, f(x;a,b,mu,sigma): %d', x.toFixed( 4 ), a.toFixed( 4 ), b.toFixed( 4 ), mu.toFixed( 4 ), sigma.toFixed( 4 ), y.toFixed( 4 ) );
}
```
</section>
<!-- /.examples -->
<!-- Section for related `stdlib` packages. Do not manually edit this section, as it is automatically populated. -->
<section class="related">
</section>
<!-- /.related -->
<!-- Section for all links. Make sure to keep an empty line after the `section` element and another before the `/section` close. -->
<section class="links">
[cdf]: https://en.wikipedia.org/wiki/Cumulative_distribution_function
[pdf]: https://en.wikipedia.org/wiki/Probability_density_function
[normal-distribution]: https://en.wikipedia.org/wiki/Normal_distribution
[truncated-normal-distribution]: https://en.wikipedia.org/wiki/Truncated_normal_distribution
</section>
<!-- /.links -->