UNPKG

@stdlib/stats

Version:

Standard library statistical functions.

96 lines (83 loc) 2.15 kB
/** * @license Apache-2.0 * * Copyright (c) 2018 The Stdlib Authors. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ 'use strict'; // MODULES // var constantFunction = require( '@stdlib/utils/constant-function' ); var isnan = require( '@stdlib/math/base/assert/is-nan' ); var sqrt = require( '@stdlib/math/base/special/sqrt' ); // MAIN // /** * Returns a function for evaluating the quantile function for a triangular distribution with lower limit `a`, upper limit `b` and mode `c`. * * @param {number} a - lower limit * @param {number} b - upper limit * @param {number} c - mode * @returns {Function} quantile function * * @example * var quantile = factory( 2.0, 4.0, 2.5 ); * var y = quantile( 0.4 ); * // returns ~2.658 * * y = quantile( 0.8 ); * // returns ~3.225 */ function factory( a, b, c ) { var pInflection; var fact1; var fact2; if ( isnan( a ) || isnan( b ) || isnan( c ) || a > c || c > b ) { return constantFunction( NaN ); } pInflection = ( c - a ) / ( b - a ); fact1 = ( b - a ) * ( c - a); fact2 = ( b - a ) * ( b - c ); return quantile; /** * Evaluates the quantile function for a triangular distribution. * * @private * @param {Probability} p - input value * @returns {number} evaluated quantile function * * @example * var y = quantile( 0.3 ); * // returns <number> */ function quantile( p ) { if ( isnan( p ) || p < 0.0 || p > 1.0 ) { return NaN; } if ( p < pInflection ) { return a + sqrt( fact1 * p ); } if ( p > pInflection ) { return b - sqrt( fact2 * ( 1.0 - p ) ); } // Case: p = pInflection return c; } } // EXPORTS // module.exports = factory;