UNPKG

@stdlib/stats

Version:

Standard library statistical functions.

108 lines (97 loc) 2.22 kB
/** * @license Apache-2.0 * * Copyright (c) 2018 The Stdlib Authors. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ 'use strict'; // MODULES // var isnan = require( '@stdlib/math/base/assert/is-nan' ); var exp = require( '@stdlib/math/base/special/exp' ); var pow = require( '@stdlib/math/base/special/pow' ); // MAIN // /** * Evaluates the moment-generating function (MGF) for a triangular distribution with lower limit `a`, upper limit `b`, and mode `c` at a value `t`. * * @param {number} t - input value * @param {number} a - lower limit * @param {number} b - upper limit * @param {number} c - mode * @returns {number} evaluated MGF * * @example * var y = mgf( 0.5, -1.0, 1.0, 0.0 ); * // returns ~1.021 * * @example * var y = mgf( 0.5, -1.0, 1.0, 0.5 ); * // returns ~1.111 * * @example * var y = mgf( -0.3, -20.0, 0.0, -2.0 ); * // returns ~24.334 * * @example * var y = mgf( -2.0, -1.0, 1.0, 0.0 ); * // returns ~1.381 * * @example * var y = mgf( NaN, 0.0, 1.0, 0.5 ); * // returns NaN * * @example * var y = mgf( 0.0, NaN, 1.0, 0.5 ); * // returns NaN * * @example * var y = mgf( 0.0, 0.0, NaN, 0.5 ); * // returns NaN * * @example * var y = mgf( 0.5, 1.0, 0.0, NaN ); * // returns NaN * * @example * var y = mgf( 0.5, 1.0, 0.0, 1.5 ); * // returns NaN */ function mgf( t, a, b, c ) { var bmc; var bma; var cma; var ret; if ( isnan( t ) || isnan( a ) || isnan( b ) || isnan( c ) || a > c || c > b ) { return NaN; } if ( t === 0.0 ) { return 1.0; } bmc = b - c; bma = b - a; cma = c - a; ret = (bmc * exp( a * t )) - (bma * exp( c * t )); ret += cma * exp( b * t ); ret *= 2.0; ret /= bma * cma * bmc * pow( t, 2.0 ); return ret; } // EXPORTS // module.exports = mgf;