UNPKG

@stdlib/stats

Version:

Standard library statistical functions.

92 lines (82 loc) 2.19 kB
/** * @license Apache-2.0 * * Copyright (c) 2018 The Stdlib Authors. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ 'use strict'; // MODULES // var expm1 = require( '@stdlib/math/base/special/expm1' ); var isnan = require( '@stdlib/math/base/assert/is-nan' ); var log1p = require( '@stdlib/math/base/special/log1p' ); var exp = require( '@stdlib/math/base/special/exp' ); var pow = require( '@stdlib/math/base/special/pow' ); var ln = require( '@stdlib/math/base/special/ln' ); var LNHALF = require( '@stdlib/constants/float64/ln-half' ); var NINF = require( '@stdlib/constants/float64/ninf' ); // MAIN // /** * Evaluates the logarithm of the cumulative distribution function (CDF) for a Rayleigh distribution with scale parameter `sigma` at a value `x`. * * @param {number} x - input value * @param {NonNegativeNumber} sigma - scale parameter * @returns {number} evaluated logCDF * * @example * var y = logcdf( 2.0, 3.0 ); * // returns ~-1.613 * * @example * var y = logcdf( 1.0, 2.0 ); * // returns ~-2.141 * * @example * var y = logcdf( -1.0, 4.0 ); * // returns -Infinity * * @example * var y = logcdf( NaN, 1.0 ); * // returns NaN * * @example * var y = logcdf( 0.0, NaN ); * // returns NaN * * @example * // Negative scale parameter: * var y = logcdf( 2.0, -1.0 ); * // returns NaN */ function logcdf( x, sigma ) { var s2; var p; if ( isnan( x ) || isnan( sigma ) || sigma < 0.0 ) { return NaN; } if ( sigma === 0.0 ) { return ( x < 0.0 ) ? NINF : 0.0; } if ( x < 0.0 ) { return NINF; } s2 = pow( sigma, 2.0 ); p = -pow( x, 2.0 ) / ( 2.0 * s2 ); return ( p < LNHALF ) ? log1p( -exp( p ) ) : ln( -expm1( p ) ); } // EXPORTS // module.exports = logcdf;