UNPKG

@stdlib/stats

Version:

Standard library statistical functions.

148 lines (135 loc) 3.25 kB
/** * @license Apache-2.0 * * Copyright (c) 2018 The Stdlib Authors. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ 'use strict'; // MODULES // var cdf = require( './../../../../../base/dists/negative-binomial/cdf' ); var erfcinv = require( '@stdlib/math/base/special/erfcinv' ); var isnan = require( '@stdlib/math/base/assert/is-nan' ); var round = require( '@stdlib/math/base/special/round' ); var sqrt = require( '@stdlib/math/base/special/sqrt' ); var SQRT2 = require( '@stdlib/constants/float64/sqrt-two' ); var PINF = require( '@stdlib/constants/float64/pinf' ); var search = require( './search.js' ); // MAIN // /** * Evaluates the quantile function for a negative binomial distribution with number of successes until experiment is stopped `r` and success probability `p` at a probability `k`. * * @param {Probability} k - input value * @param {PositiveNumber} r - number of successes until experiment is stopped * @param {Probability} p - success probability * @returns {NonNegativeInteger} evaluated quantile function * * @example * var y = quantile( 0.9, 20.0, 0.2 ); * // returns 106 * * @example * var y = quantile( 0.9, 20.0, 0.8 ); * // returns 8 * * @example * var y = quantile( 0.5, 10.0, 0.4 ); * // returns 14 * * @example * var y = quantile( 0.0, 10.0, 0.9 ); * // returns 0 * * @example * var y = quantile( 1.1, 20.0, 0.5 ); * // returns NaN * * @example * var y = quantile( -0.1, 20.0, 0.5 ); * // returns NaN * * @example * var y = quantile( 0.5, 0.0, 0.5 ); * // returns NaN * * @example * var y = quantile( 0.5, -2.0, 0.5 ); * // returns NaN * * @example * var y = quantile( 0.3, 20.0, -1.0 ); * // returns NaN * * @example * var y = quantile( 0.3, 20.0, 1.5 ); * // returns NaN * * @example * var y = quantile( NaN, 20.0, 0.5 ); * // returns NaN * * @example * var y = quantile( 0.3, NaN, 0.5 ); * // returns NaN * * @example * var y = quantile( 0.3, 20.0, NaN ); * // returns NaN */ function quantile( k, r, p ) { var sigmaInv; var guess; var sigma; var corr; var mu; var x2; var x; var q; if ( isnan( r ) || isnan( p ) || isnan( k ) || r <= 0.0 || p < 0.0 || p > 1.0 || k < 0.0 || k > 1.0 ) { return NaN; } if ( k === 0.0 ) { return 0.0; } if ( k === 1.0 ) { return PINF; } q = 1.0 - p; mu = ( r * q ) / p; sigma = sqrt( r * q ) / p; sigmaInv = 1.0 / sigma; // Cornish-Fisher expansion: if ( k < 0.5 ) { x = -erfcinv( 2.0 * k ) * SQRT2; } else { x = erfcinv( 2.0 * (1.0-k) ) * SQRT2; } x2 = x * x; // Skewness correction: corr = x + (sigmaInv * ( x2 - 1.0 ) / 6.0); guess = round( mu + (sigma * corr) ); return ( cdf( guess, r, p ) >= k ) ? search.left( guess, k, r, p ) : search.right( guess, k, r, p ); } // EXPORTS // module.exports = quantile;