UNPKG

@stdlib/stats

Version:

Standard library statistical functions.

98 lines (88 loc) 2.23 kB
/** * @license Apache-2.0 * * Copyright (c) 2018 The Stdlib Authors. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ 'use strict'; // MODULES // var isnan = require( '@stdlib/math/base/assert/is-nan' ); var pow = require( '@stdlib/math/base/special/pow' ); var ln = require( '@stdlib/math/base/special/ln' ); var NINF = require( '@stdlib/constants/float64/ninf' ); var PI = require( '@stdlib/constants/float64/pi' ); // MAIN // /** * Evaluates the natural logarithm of the probability density function (PDF) for a lognormal distribution with location parameter `mu` and scale parameter `sigma` at a value `x`. * * @param {number} x - input value * @param {number} mu - location parameter * @param {PositiveNumber} sigma - scale parameter * @returns {number} evaluated logPDF * * @example * var y = logpdf( 2.0, 0.0, 1.0 ); * // returns ~-1.852 * * @example * var y = logpdf( 1.0, 0.0, 1.0 ); * // returns ~-0.919 * * @example * var y = logpdf( 1.0, 3.0, 1.0 ); * // returns ~-5.419 * * @example * var y = logpdf( -1.0, 4.0, 2.0 ); * // returns -Infinity * * @example * var y = logpdf( NaN, 0.0, 1.0 ); * // returns NaN * * @example * var y = logpdf( 0.0, NaN, 1.0 ); * // returns NaN * * @example * var y = logpdf( 0.0, 0.0, NaN ); * // returns NaN * * @example * // Negative scale parameter: * var y = logpdf( 2.0, 0.0, -1.0 ); * // returns NaN */ function logpdf( x, mu, sigma ) { var s2; var A; var B; if ( isnan( x ) || isnan( mu ) || isnan( sigma ) || sigma <= 0.0 ) { return NaN; } if ( x <= 0.0 ) { return NINF; } s2 = pow( sigma, 2.0 ); A = -0.5 * ln( 2.0 * s2 * PI ); B = -1.0 / ( 2.0 * s2 ); return A - ln( x ) + ( B * pow( ln(x) - mu, 2.0 ) ); } // EXPORTS // module.exports = logpdf;