@stdlib/stats
Version:
Standard library statistical functions.
96 lines (86 loc) • 2.08 kB
JavaScript
/**
* @license Apache-2.0
*
* Copyright (c) 2018 The Stdlib Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
'use strict';
// MODULES //
var isnan = require( '@stdlib/math/base/assert/is-nan' );
var pow = require( '@stdlib/math/base/special/pow' );
// MAIN //
/**
* Evaluates the quantile function for a Kumaraswamy's double bounded distribution with first shape parameter `a` and second shape parameter `b` at a probability `p`.
*
* @param {Probability} p - input probability
* @param {PositiveNumber} a - first shape parameter
* @param {PositiveNumber} b - second shape parameter
* @returns {number} evaluated quantile function
*
* @example
* var y = quantile( 0.5, 1.0, 1.0 );
* // returns 0.5
*
* @example
* var y = quantile( 0.5, 2.0, 4.0 );
* // returns ~0.399
*
* @example
* var y = quantile( 0.2, 2.0, 2.0 );
* // returns ~0.325
*
* @example
* var y = quantile( 0.8, 4.0, 4.0 );
* // returns ~0.759
*
* @example
* var y = quantile( -0.5, 4.0, 2.0 );
* // returns NaN
*
* @example
* var y = quantile( 0.8, -1.0, 0.5 );
* // returns NaN
*
* @example
* var y = quantile( 0.8, 0.5, -1.0 );
* // returns NaN
*
* @example
* var y = quantile( NaN, 1.0, 1.0 );
* // returns NaN
*
* @example
* var y = quantile( 0.1, NaN, 1.0 );
* // returns NaN
*
* @example
* var y = quantile( 0.1, 1.0, NaN );
* // returns NaN
*/
function quantile( p, a, b ) {
if (
isnan( p ) ||
isnan( a ) ||
isnan( b ) ||
a <= 0.0 ||
b <= 0.0 ||
p < 0.0 ||
p > 1.0
) {
return NaN;
}
return pow( 1.0 - pow( 1.0-p, 1.0/b ), 1.0/a );
}
// EXPORTS //
module.exports = quantile;