UNPKG

@stdlib/stats

Version:

Standard library statistical functions.

101 lines (91 loc) 2.12 kB
/** * @license Apache-2.0 * * Copyright (c) 2018 The Stdlib Authors. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ 'use strict'; // MODULES // var isnan = require( '@stdlib/math/base/assert/is-nan' ); var pow = require( '@stdlib/math/base/special/pow' ); // MAIN // /** * Evaluates the probability density function (PDF) for a Kumaraswamy's double bounded distribution with first shape parameter `a` and second shape parameter `b` at a value `x`. * * @param {number} x - input value * @param {PositiveNumber} a - first shape parameter * @param {PositiveNumber} b - second shape parameter * @returns {number} evaluated PDF * * @example * var y = pdf( 0.5, 1.0, 1.0 ); * // returns 1.0 * * @example * var y = pdf( 0.5, 2.0, 4.0 ); * // returns ~1.688 * * @example * var y = pdf( 0.2, 2.0, 2.0 ); * // returns ~0.768 * * @example * var y = pdf( 0.8, 4.0, 4.0 ); * // returns ~1.686 * * @example * var y = pdf( -0.5, 4.0, 2.0 ); * // returns 0.0 * * @example * var y = pdf( 1.5, 4.0, 2.0 ); * // returns 0.0 * * @example * var y = pdf( 2.0, -1.0, 0.5 ); * // returns NaN * * @example * var y = pdf( 2.0, 0.5, -1.0 ); * // returns NaN * * @example * var y = pdf( NaN, 1.0, 1.0 ); * // returns NaN * * @example * var y = pdf( 0.0, NaN, 1.0 ); * // returns NaN * * @example * var y = pdf( 0.0, 1.0, NaN ); * // returns NaN */ function pdf( x, a, b ) { if ( isnan( x ) || isnan( a ) || isnan( b ) || a <= 0.0 || b <= 0.0 ) { return NaN; } if ( x <= 0.0 || x >= 1.0 ) { return 0.0; } return ( a*b ) * pow( x, a - 1.0 ) * pow( 1.0 - pow( x, a ), b - 1.0 ); } // EXPORTS // module.exports = pdf;