UNPKG

@stdlib/stats

Version:

Standard library statistical functions.

375 lines (346 loc) 9.88 kB
/** * @license Apache-2.0 * * Copyright (c) 2018 The Stdlib Authors. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /* eslint-disable no-restricted-syntax, no-invalid-this */ 'use strict'; // MODULES // var defineProperty = require( '@stdlib/utils/define-property' ); var setReadOnly = require( '@stdlib/utils/define-nonenumerable-read-only-property' ); var setReadOnlyAccessor = require( '@stdlib/utils/define-nonenumerable-read-only-accessor' ); var isPositive = require( '@stdlib/assert/is-positive-number' ).isPrimitive; var kurtosis = require( './../../../../../base/dists/kumaraswamy/kurtosis' ); var mean = require( './../../../../../base/dists/kumaraswamy/mean' ); var mode = require( './../../../../../base/dists/kumaraswamy/mode' ); var skewness = require( './../../../../../base/dists/kumaraswamy/skewness' ); var stdev = require( './../../../../../base/dists/kumaraswamy/stdev' ); var variance = require( './../../../../../base/dists/kumaraswamy/variance' ); var cdf = require( './../../../../../base/dists/kumaraswamy/cdf' ); var logcdf = require( './../../../../../base/dists/kumaraswamy/logcdf' ); var logpdf = require( './../../../../../base/dists/kumaraswamy/logpdf' ); var pdf = require( './../../../../../base/dists/kumaraswamy/pdf' ); var quantile = require( './../../../../../base/dists/kumaraswamy/quantile' ); var format = require( '@stdlib/string/format' ); // FUNCTIONS // /** * Evaluates the cumulative distribution function (CDF). * * @private * @param {number} x - input value * @returns {number} evaluated CDF */ function kumaraswamyCDF( x ) { return cdf( x, this.a, this.b ); } /** * Evaluates the natural logarithm of the cumulative distribution function (CDF). * * @private * @param {number} x - input value * @returns {number} evaluated logCDF */ function kumaraswamyLogCDF( x ) { return logcdf( x, this.a, this.b ); } /** * Evaluates the natural logarithm of the probability density function (PDF). * * @private * @param {number} x - input value * @returns {number} evaluated logPDF */ function kumaraswamyLogPDF( x ) { return logpdf( x, this.a, this.b ); } /** * Evaluates the probability density function (PDF). * * @private * @param {number} x - input value * @returns {number} evaluated PDF */ function kumaraswamyPDF( x ) { return pdf( x, this.a, this.b ); } /** * Evaluates the quantile function. * * @private * @param {Probability} p - input probability * @returns {number} evaluated quantile function */ function kumaraswamyQuantile( p ) { return quantile( p, this.a, this.b ); } // MAIN // /** * Kumaraswamy's double bounded distribution constructor. * * @constructor * @param {PositiveNumber} [a=1.0] - first shape parameter * @param {PositiveNumber} [b=1.0] - second shape parameter * @throws {TypeError} `a` must be a positive number * @throws {TypeError} `b` must be a positive number * @returns {Kumaraswamy} distribution instance * * @example * var kumaraswamy = new Kumaraswamy( 1.0, 1.0 ); * * var y = kumaraswamy.cdf( 0.8 ); * // returns 0.8 * * var v = kumaraswamy.mode; * // returns NaN */ function Kumaraswamy() { var a; var b; if ( !(this instanceof Kumaraswamy) ) { if ( arguments.length === 0 ) { return new Kumaraswamy(); } return new Kumaraswamy( arguments[ 0 ], arguments[ 1 ] ); } if ( arguments.length ) { a = arguments[ 0 ]; b = arguments[ 1 ]; if ( !isPositive( a ) ) { throw new TypeError( format( 'invalid argument. First shape parameter must be a positive number. Value: `%s`.', a ) ); } if ( !isPositive( b ) ) { throw new TypeError( format( 'invalid argument. Second shape parameter must be a positive number. Value: `%s`.', b ) ); } } else { a = 1.0; b = 1.0; } defineProperty( this, 'a', { 'configurable': false, 'enumerable': true, 'get': function get() { return a; }, 'set': function set( value ) { if ( !isPositive( value ) ) { throw new TypeError( format( 'invalid assignment. Must be a positive number. Value: `%s`.', value ) ); } a = value; } }); defineProperty( this, 'b', { 'configurable': false, 'enumerable': true, 'get': function get() { return b; }, 'set': function set( value ) { if ( !isPositive( value ) ) { throw new TypeError( format( 'invalid assignment. Must be a positive number. Value: `%s`.', value ) ); } b = value; } }); return this; } /** * Kumaraswamy's double bounded distribution excess kurtosis. * * @name kurtosis * @memberof Kumaraswamy.prototype * @type {number} * @see [kurtosis]{@link https://en.wikipedia.org/wiki/Kurtosis} * * @example * var kumaraswamy = new Kumaraswamy( 4.0, 12.0 ); * * var v = kumaraswamy.kurtosis; * // returns ~2.704 */ setReadOnlyAccessor( Kumaraswamy.prototype, 'kurtosis', function get() { return kurtosis( this.a, this.b ); }); /** * Kumaraswamy's double bounded distribution expected value. * * @name mean * @memberof Kumaraswamy.prototype * @type {number} * @see [expected value]{@link https://en.wikipedia.org/wiki/Expected_value} * * @example * var kumaraswamy = new Kumaraswamy( 4.0, 12.0 ); * * var v = kumaraswamy.mean; * // returns ~0.481 */ setReadOnlyAccessor( Kumaraswamy.prototype, 'mean', function get() { return mean( this.a, this.b ); }); /** * Kumaraswamy's double bounded distribution mode. * * @name mode * @memberof Kumaraswamy.prototype * @type {number} * @see [mode]{@link https://en.wikipedia.org/wiki/Mode_%28statistics%29} * * @example * var kumaraswamy = new Kumaraswamy( 4.0, 12.0 ); * * var v = kumaraswamy.mode; * // returns ~0.503 */ setReadOnlyAccessor( Kumaraswamy.prototype, 'mode', function get() { return mode( this.a, this.b ); }); /** * Kumaraswamy's double bounded distribution skewness. * * @name skewness * @memberof Kumaraswamy.prototype * @type {number} * @see [skewness]{@link https://en.wikipedia.org/wiki/Skewness} * * @example * var kumaraswamy = new Kumaraswamy( 4.0, 12.0 ); * * var v = kumaraswamy.skewness; * // returns ~-0.201 */ setReadOnlyAccessor( Kumaraswamy.prototype, 'skewness', function get() { return skewness( this.a, this.b ); }); /** * Kumaraswamy's double bounded distribution standard deviation. * * @name stdev * @memberof Kumaraswamy.prototype * @type {PositiveNumber} * @see [standard deviation]{@link https://en.wikipedia.org/wiki/Standard_deviation} * * @example * var kumaraswamy = new Kumaraswamy( 4.0, 12.0 ); * * var v = kumaraswamy.stdev; * // returns ~0.13 */ setReadOnlyAccessor( Kumaraswamy.prototype, 'stdev', function get() { return stdev( this.a, this.b ); }); /** * Kumaraswamy's double bounded distribution variance. * * @name variance * @memberof Kumaraswamy.prototype * @type {PositiveNumber} * @see [variance]{@link https://en.wikipedia.org/wiki/Variance} * * @example * var kumaraswamy = new Kumaraswamy( 4.0, 12.0 ); * * var v = kumaraswamy.variance; * // returns ~0.017 */ setReadOnlyAccessor( Kumaraswamy.prototype, 'variance', function get() { return variance( this.a, this.b ); }); /** * Evaluates the cumulative distribution function (CDF). * * @name cdf * @memberof Kumaraswamy.prototype * @type {Function} * @param {number} x - input value * @returns {number} evaluated CDF * @see [cdf]{@link https://en.wikipedia.org/wiki/Cumulative_distribution_function} * * @example * var kumaraswamy = new Kumaraswamy( 2.0, 4.0 ); * * var v = kumaraswamy.cdf( 0.5 ); * // returns ~0.684 */ setReadOnly( Kumaraswamy.prototype, 'cdf', kumaraswamyCDF ); /** * Evaluates the natural logarithm of the cumulative distribution function (CDF). * * @name logcdf * @memberof Kumaraswamy.prototype * @type {Function} * @param {number} x - input value * @returns {number} evaluated logCDF * @see [cdf]{@link https://en.wikipedia.org/wiki/Cumulative_distribution_function} * * @example * var kumaraswamy = new Kumaraswamy( 2.0, 4.0 ); * * var v = kumaraswamy.logcdf( 0.5 ); * // returns ~-0.38 */ setReadOnly( Kumaraswamy.prototype, 'logcdf', kumaraswamyLogCDF ); /** * Evaluates the natural logarithm of the probability density function (PDF). * * @name logpdf * @memberof Kumaraswamy.prototype * @type {Function} * @param {number} x - input value * @returns {number} evaluated logPDF * @see [pdf]{@link https://en.wikipedia.org/wiki/Probability_density_function} * * @example * var kumaraswamy = new Kumaraswamy( 2.0, 4.0 ); * * var v = kumaraswamy.logpdf( 0.9 ); * // returns ~-3.008 */ setReadOnly( Kumaraswamy.prototype, 'logpdf', kumaraswamyLogPDF ); /** * Evaluates the probability density function (PDF). * * @name pdf * @memberof Kumaraswamy.prototype * @type {Function} * @param {number} x - input value * @returns {number} evaluated PDF * @see [pdf]{@link https://en.wikipedia.org/wiki/Probability_density_function} * * @example * var kumaraswamy = new Kumaraswamy( 2.0, 4.0 ); * * var v = kumaraswamy.pdf( 0.9 ); * // returns ~0.049 */ setReadOnly( Kumaraswamy.prototype, 'pdf', kumaraswamyPDF ); /** * Evaluates the quantile function. * * @name quantile * @memberof Kumaraswamy.prototype * @type {Function} * @param {Probability} p - input probability * @returns {number} evaluated quantile function * @see [quantile function]{@link https://en.wikipedia.org/wiki/Quantile_function} * * @example * var kumaraswamy = new Kumaraswamy( 2.0, 4.0 ); * * var v = kumaraswamy.quantile( 0.5 ); * // returns ~0.399 */ setReadOnly( Kumaraswamy.prototype, 'quantile', kumaraswamyQuantile ); // EXPORTS // module.exports = Kumaraswamy;