UNPKG

@stdlib/stats

Version:

Standard library statistical functions.

89 lines (78 loc) 2.11 kB
/** * @license Apache-2.0 * * Copyright (c) 2018 The Stdlib Authors. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ 'use strict'; // MODULES // var constantFunction = require( '@stdlib/utils/constant-function' ); var gammaln = require( '@stdlib/math/base/special/gammaln' ); var isnan = require( '@stdlib/math/base/assert/is-nan' ); var exp = require( '@stdlib/math/base/special/exp' ); var ln = require( '@stdlib/math/base/special/ln' ); // MAIN // /** * Returns a function for evaluating the probability density function (PDF) for an inverse gamma distribution with shape parameter `alpha` and scale parameter `beta`. * * @param {PositiveNumber} alpha - shape parameter * @param {PositiveNumber} beta - scale parameter * @returns {Function} PDF * * @example * var pdf = factory( 3.0, 1.5 ); * * var y = pdf( 1.0 ); * // returns ~0.377 * * y = pdf( 2.0 ); * // returns ~0.05 */ function factory( alpha, beta ) { var firstTerm; if ( isnan( alpha ) || isnan( beta ) || alpha <= 0.0 || beta <= 0.0 ) { return constantFunction( NaN ); } firstTerm = ( alpha * ln( beta ) ) - gammaln( alpha ); return pdf; /** * Evaluates the probability density function (PDF) for an inverse gamma distribution. * * @private * @param {number} x - input value * @returns {number} evaluated PDF * * @example * var y = pdf( -1.2 ); * // returns <number> */ function pdf( x ) { var lnl; if ( isnan( x ) ) { return NaN; } if ( x <= 0.0 ) { return 0.0; } lnl = firstTerm - (( alpha + 1.0 ) * ln( x )) - (beta / x); return exp( lnl ); } } // EXPORTS // module.exports = factory;