@stdlib/stats
Version:
Standard library statistical functions.
103 lines (91 loc) • 2.51 kB
JavaScript
/**
* @license Apache-2.0
*
* Copyright (c) 2018 The Stdlib Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
;
// MODULES //
var isNonNegativeInteger = require( '@stdlib/math/base/assert/is-nonnegative-integer' );
var isnan = require( '@stdlib/math/base/assert/is-nan' );
var constantFunction = require( '@stdlib/utils/constant-function' );
var max = require( '@stdlib/math/base/special/max' );
var min = require( '@stdlib/math/base/special/min' );
var cdf = require( './../../../../../base/dists/hypergeometric/cdf' );
var PINF = require( '@stdlib/constants/float64/pinf' );
// MAIN //
/**
* Returns a function for evaluating the quantile function for a hypergeometric distribution with population size `N`, subpopulation size `K`, and number of draws `n`.
*
* @param {NonNegativeInteger} N - population size
* @param {NonNegativeInteger} K - subpopulation size
* @param {NonNegativeInteger} n - number of draws
* @returns {Function} quantile function
*
* @example
* var quantile = factory( 100, 20, 10 );
* var y = quantile( 0.2 );
* // returns 1
*
* y = quantile( 0.9 );
* // returns 4
*/
function factory( N, K, n ) {
if (
isnan( N ) ||
isnan( K ) ||
isnan( n ) ||
!isNonNegativeInteger( N ) ||
!isNonNegativeInteger( K ) ||
!isNonNegativeInteger( n ) ||
N === PINF ||
K === PINF ||
K > N ||
n > N
) {
return constantFunction( NaN );
}
return quantile;
/**
* Evaluates the quantile function for a hypergeometric distribution.
*
* @private
* @param {Probability} p - input value
* @returns {NonNegativeInteger} evaluated quantile function
*/
function quantile( p ) {
var prob;
var x;
if ( isnan( p ) || p < 0.0 || p > 1.0 ) {
return NaN;
}
if ( p === 0.0 ) {
return max( 0, n + K - N );
}
if ( p === 1.0 ) {
return min( n, K );
}
x = max( 0, n + K - N );
while ( true ) {
prob = cdf( x, N, K, n );
if ( prob > p ) {
break;
}
x += 1;
}
return x;
}
}
// EXPORTS //
module.exports = factory;