UNPKG

@stdlib/stats

Version:

Standard library statistical functions.

104 lines (92 loc) 2.69 kB
/** * @license Apache-2.0 * * Copyright (c) 2018 The Stdlib Authors. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ 'use strict'; // MODULES // var isNonNegativeInteger = require( '@stdlib/math/base/assert/is-nonnegative-integer' ); var constantFunction = require( '@stdlib/utils/constant-function' ); var isnan = require( '@stdlib/math/base/assert/is-nan' ); var fln = require( '@stdlib/math/base/special/factorialln' ); var max = require( '@stdlib/math/base/special/max' ); var min = require( '@stdlib/math/base/special/min' ); var NINF = require( '@stdlib/constants/float64/ninf' ); var PINF = require( '@stdlib/constants/float64/pinf' ); // MAIN // /** * Returns a function for evaluating the natural logarithm of the probability mass function (PMF) for a hypergeometric distribution with population size `N`, subpopulation size `K` and number of draws `n`. * * @param {NonNegativeInteger} N - population size * @param {NonNegativeInteger} K - subpopulation size * @param {NonNegativeInteger} n - number of draws * @returns {Function} logPMF * * @example * var mylogpmf = factory( 30, 20, 5 ); * var y = mylogpmf( 4.0 ); * // returns ~-1.079 * * y = mylogpmf( 1.0 ); * // returns ~-3.524 */ function factory( N, K, n ) { var maxs; var mins; if ( isnan( N ) || isnan( K ) || isnan( n ) || !isNonNegativeInteger( N ) || !isNonNegativeInteger( K ) || !isNonNegativeInteger( n ) || N === PINF || K === PINF || K > N || n > N ) { return constantFunction( NaN ); } mins = max( 0, n + K - N ); maxs = min( K, n ); return logpmf; /** * Evaluates the natural logarithm of the probability mass function (PMF) for a hypergeometric distribution. * * @private * @param {number} x - input value * @returns {number} evaluated logPMF */ function logpmf( x ) { var ldenom; var lnum; if ( isnan( x ) ) { return NaN; } if ( isNonNegativeInteger( x ) && mins <= x && x <= maxs ) { lnum = fln( n ) + fln( K ) + fln( N - n ) + fln( N - K ); ldenom = fln( N ) + fln( x ) + fln( n - x ); ldenom += fln( K - x ) + fln( N - K + x - n ); return lnum - ldenom; } return NINF; } } // EXPORTS // module.exports = factory;