UNPKG

@stdlib/stats

Version:

Standard library statistical functions.

97 lines (87 loc) 2.1 kB
/** * @license Apache-2.0 * * Copyright (c) 2018 The Stdlib Authors. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ 'use strict'; // MODULES // var isNonNegativeInteger = require( '@stdlib/math/base/assert/is-nonnegative-integer' ); var PINF = require( '@stdlib/constants/float64/pinf' ); // MAIN // /** * Returns the excess kurtosis of a hypergeometric distribution. * * @param {NonNegativeInteger} N - population size * @param {NonNegativeInteger} K - subpopulation size * @param {NonNegativeInteger} n - number of draws * @returns {number} kurtosis * * @example * var v = kurtosis( 16, 11, 4 ); * // returns ~-0.326 * * @example * var v = kurtosis( 4, 2, 2 ); * // returns 0.0 * * @example * var v = kurtosis( 10, 5, 12 ); * // returns NaN * * @example * var v = kurtosis( 10.3, 10, 4 ); * // returns NaN * * @example * var v = kurtosis( 10, 5.5, 4 ); * // returns NaN * * @example * var v = kurtosis( 10, 5, 4.5 ); * // returns NaN * * @example * var v = kurtosis( NaN, 10, 4 ); * // returns NaN * * @example * var v = kurtosis( 20, NaN, 4 ); * // returns NaN * * @example * var v = kurtosis( 20, 10, NaN ); * // returns NaN */ function kurtosis( N, K, n ) { var p; var q; if ( !isNonNegativeInteger( N ) || !isNonNegativeInteger( K ) || !isNonNegativeInteger( n ) || N === PINF || K === PINF || K > N || n > N ) { return NaN; } p = ( N-1 ) * ( N*N ) * ( ( N*(N+1) ) - ( 6*K*(N-K) ) - ( 6*n*(N-n) ) ); p += 6 * n * K * ( N-K ) * ( N-n ) * ( (5*N) - 6 ); q = n * K * ( N-K ) * ( N-n ) * ( N-2 ) * ( N-3 ); return p / q; } // EXPORTS // module.exports = kurtosis;