UNPKG

@stdlib/stats

Version:

Standard library statistical functions.

148 lines (135 loc) 3.25 kB
/** * @license Apache-2.0 * * Copyright (c) 2018 The Stdlib Authors. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ 'use strict'; // MODULES // var isNonNegativeInteger = require( '@stdlib/math/base/assert/is-nonnegative-integer' ); var isnan = require( '@stdlib/math/base/assert/is-nan' ); var trunc = require( '@stdlib/math/base/special/trunc' ); var max = require( '@stdlib/math/base/special/max' ); var min = require( '@stdlib/math/base/special/min' ); var pmf = require( './../../../../../base/dists/hypergeometric/pmf' ); var PINF = require( '@stdlib/constants/float64/pinf' ); var Float64Array = require( '@stdlib/array/float64' ); var sum = require( './sum.js' ); // MAIN // /** * Evaluates the cumulative distribution function (CDF) for a hypergeometric distribution with population size `N`, subpopulation size `K`, and number of draws `n` at a value `x`. * * @param {number} x - input value * @param {NonNegativeInteger} N - population size * @param {NonNegativeInteger} K - subpopulation size * @param {NonNegativeInteger} n - number of draws * @returns {Probability} evaluated CDF * * @example * var y = cdf( 1.0, 8, 4, 2 ); * // returns ~0.786 * * @example * var y = cdf( 1.5, 8, 4, 2 ); * // returns ~0.786 * * @example * var y = cdf( 2.0, 8, 4, 2 ); * // returns 1.0 * * @example * var y = cdf( 0, 8, 4, 2 ); * // returns ~0.214 * * @example * var y = cdf( NaN, 10, 5, 2 ); * // returns NaN * * @example * var y = cdf( 0.0, NaN, 5, 2 ); * // returns NaN * * @example * var y = cdf( 0.0, 10, NaN, 2 ); * // returns NaN * * @example * var y = cdf( 0.0, 10, 5, NaN ); * // returns NaN * * @example * var y = cdf( 2.0, 10.5, 5, 2 ); * // returns NaN * * @example * var y = cdf( 2.0, 10, 1.5, 2 ); * // returns NaN * * @example * var y = cdf( 2.0, 10, 5, -2.0 ); * // returns NaN * * @example * var y = cdf( 2.0, 10, 5, 12 ); * // returns NaN * * @example * var y = cdf( 2.0, 8, 3, 9 ); * // returns NaN */ function cdf( x, N, K, n ) { var denom; var probs; var num; var ret; var i; if ( isnan( x ) || isnan( N ) || isnan( K ) || isnan( n ) || !isNonNegativeInteger( N ) || !isNonNegativeInteger( K ) || !isNonNegativeInteger( n ) || N === PINF || K === PINF || K > N || n > N ) { return NaN; } x = trunc( x ); if ( x < max( 0, n+K-N ) ) { return 0.0; } if ( x >= min( n, K ) ) { return 1.0; } probs = new Float64Array( x+1 ); probs[ x ] = pmf( x, N, K, n ); /* * Use recurrence relation: * * (x+1)( N - K - (n-x-1))P(X=x+1)=(K-x)(n-x)P(X=x) */ for ( i = x-1; i >= 0; i-- ) { num = ( i+1 ) * ( N-K-(n-i-1) ); denom = ( K-i ) * ( n-i ); probs[ i ] = ( num/denom ) * probs[ i+1 ]; } ret = sum( probs ); return min( ret, 1.0 ); } // EXPORTS // module.exports = cdf;