UNPKG

@stdlib/stats

Version:

Standard library statistical functions.

161 lines (101 loc) 4.4 kB
<!-- @license Apache-2.0 Copyright (c) 2018 The Stdlib Authors. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. --> # Logarithm of Probability Mass Function > [Geometric][geometric-distribution] distribution logarithm of [probability mass function][pmf] (PMF). <section class="intro"> The [probability mass function][pmf] (PMF) for a [geometric][geometric-distribution] random variable is defined as <!-- <equation class="equation" label="eq:geometric_pmf" align="center" raw="\Pr(X = x) = \begin{cases}(1-p)^{x}\,p & \text{ for } x=0,1,2,\ldots \\ 0 & \text{ otherwise } \end{cases}" alt="Probability mass function (PMF) for a geometric distribution."> --> <div class="equation" align="center" data-raw-text="\Pr(X = x) = \begin{cases}(1-p)^{x}\,p &amp; \text{ for } x=0,1,2,\ldots \\ 0 &amp; \text{ otherwise } \end{cases}" data-equation="eq:geometric_pmf"> <img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@51534079fef45e990850102147e8945fb023d1d0/lib/node_modules/@stdlib/stats/base/dists/geometric/logpmf/docs/img/equation_geometric_pmf.svg" alt="Probability mass function (PMF) for a geometric distribution."> <br> </div> <!-- </equation> --> where `0 <= p <= 1` is the success probability. The random variable `X` denotes the number of failures until the first success in a sequence of independent Bernoulli trials. </section> <!-- /.intro --> <section class="usage"> ## Usage ```javascript var logpmf = require( '@stdlib/stats/base/dists/geometric/logpmf' ); ``` #### logpmf( x, p ) Evaluates the logarithm of the [probability mass function][pmf] (PMF) of a [geometric][geometric-distribution] distribution with success probability `0 <= p <= 1`. ```javascript var y = logpmf( 4.0, 0.3 ); // returns ~-2.631 y = logpmf( 2.0, 0.7 ); // returns ~-2.765 y = logpmf( -1.0, 0.5 ); // returns -Infinity ``` If provided `NaN` as any argument, the function returns `NaN`. ```javascript var y = logpmf( NaN, 0.0 ); // returns NaN y = logpmf( 0.0, NaN ); // returns NaN ``` If provided a success probability `p` outside of the interval `[0,1]`, the function returns `NaN`. ```javascript var y = logpmf( 2.0, -1.0 ); // returns NaN y = logpmf( 2.0, 1.5 ); // returns NaN ``` #### logpmf.factory( p ) Returns a function for evaluating the logarithm of the [probability mass function][pmf] (PMF) of a [geometric][geometric-distribution] distribution with success probability `0 <= p <= 1`. ```javascript var mylogpmf = logpmf.factory( 0.5 ); var y = mylogpmf( 3.0 ); // returns ~-2.773 y = mylogpmf( 1.0 ); // returns ~-1.386 ``` </section> <!-- /.usage --> <section class="notes"> ## Notes - In virtually all cases, using the `logpmf` or `logcdf` functions is preferable to manually computing the logarithm of the `pmf` or `cdf`, respectively, since the latter is prone to overflow and underflow. </section> <!-- /.notes --> <section class="examples"> ## Examples <!-- eslint no-undef: "error" --> ```javascript var randu = require( '@stdlib/random/base/randu' ); var round = require( '@stdlib/math/base/special/round' ); var logpmf = require( '@stdlib/stats/base/dists/geometric/logpmf' ); var p; var x; var y; var i; for ( i = 0; i < 10; i++ ) { x = round( randu() * 5.0 ); p = randu(); y = logpmf( x, p ); console.log( 'x: %d, p: %d, ln( P( X = x; p ) ): %d', x, p.toFixed( 4 ), y.toFixed( 4 ) ); } ``` </section> <!-- /.examples --> <!-- Section for related `stdlib` packages. Do not manually edit this section, as it is automatically populated. --> <section class="related"> </section> <!-- /.related --> <!-- Section for all links. Make sure to keep an empty line after the `section` element and another before the `/section` close. --> <section class="links"> [geometric-distribution]: https://en.wikipedia.org/wiki/Geometric_distribution [pmf]: https://en.wikipedia.org/wiki/Probability_mass_function </section> <!-- /.links -->