UNPKG

@stdlib/stats

Version:

Standard library statistical functions.

84 lines (73 loc) 2.08 kB
/** * @license Apache-2.0 * * Copyright (c) 2018 The Stdlib Authors. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ 'use strict'; // MODULES // var constantFunction = require( '@stdlib/utils/constant-function' ); var isnan = require( '@stdlib/math/base/assert/is-nan' ); var floor = require( '@stdlib/math/base/special/floor' ); var log1p = require( '@stdlib/math/base/special/log1p' ); var pow = require( '@stdlib/math/base/special/pow' ); var NINF = require( '@stdlib/constants/float64/ninf' ); var PINF = require( '@stdlib/constants/float64/pinf' ); // MAIN // /** * Returns a function for evaluating the logarithm of the cumulative distribution function (CDF) for a geometric distribution with success probability `p`. * * @param {Probability} p - success probability * @returns {Function} logCDF * * @example * var logcdf = factory( 0.5 ); * var y = logcdf( 3.0 ); * // returns ~-0.065 * * y = logcdf( 1.0 ); * // returns ~-0.288 */ function factory( p ) { if ( isnan( p ) || p < 0.0 || p > 1.0 ) { return constantFunction( NaN ); } return logcdf; /** * Evaluates the logarithm of the cumulative distribution function (CDF) for a geometric distribution. * * @private * @param {number} x - input value * @returns {number} evaluated logCDF * * @example * var y = logcdf( 2.0 ); * // returns <number> */ function logcdf( x ) { if ( isnan( x ) ) { return NaN; } if ( x < 0.0 ) { return NINF; } if ( x === PINF ) { return 0.0; } x = floor( x ); return log1p( -pow( 1.0 - p, x + 1.0 ) ); } } // EXPORTS // module.exports = factory;