UNPKG

@stdlib/stats

Version:

Standard library statistical functions.

95 lines (85 loc) 2.14 kB
/** * @license Apache-2.0 * * Copyright (c) 2018 The Stdlib Authors. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ 'use strict'; // MODULES // var isnan = require( '@stdlib/math/base/assert/is-nan' ); var pow = require( '@stdlib/math/base/special/pow' ); var ln = require( '@stdlib/math/base/special/ln' ); // MAIN // /** * Evaluates the quantile function for a Fréchet distribution with shape `alpha`, scale `s`, and location `m` at a probability `p`. * * @param {number} p - input probability * @param {PositiveNumber} alpha - shape parameter * @param {PositiveNumber} s - scale parameter * @param {number} m - location parameter * @returns {number} evaluated quantile function * * @example * var y = quantile( 0.5, 2.0, 3.0, 2.0 ); * // returns ~5.603 * * @example * var y = quantile( 0.2, 1.0, 3.0, -1.0 ); * // returns ~0.864 * * @example * var y = quantile( 0.3, 2.0, 1.0, 1.0 ); * // returns ~1.911 * * @example * var y = quantile( NaN, 2.0, 1.0, -1.0 ); * // returns NaN * * @example * var y = quantile( 0.1, NaN, 1.0, -1.0 ); * // returns NaN * * @example * var y = quantile( 0.1, 2.0, NaN, -1.0 ); * // returns NaN * * @example * var y = quantile( 0.1, 2.0, 1.0, NaN ); * // returns NaN * * @example * var y = quantile( 0.1, -1.0, 1.0, 0.0 ); * // returns NaN * * @example * var y = quantile( 0.1, 1.0, -1.0, 0.0 ); * // returns NaN */ function quantile( p, alpha, s, m ) { if ( isnan( p ) || isnan( alpha ) || isnan( s ) || isnan( m ) || p < 0.0 || p > 1.0 || alpha <= 0.0 || s <= 0.0 ) { return NaN; } return m + ( s * ( pow( -ln( p ), -1.0/alpha ) ) ); } // EXPORTS // module.exports = quantile;