UNPKG

@stdlib/stats

Version:

Standard library statistical functions.

99 lines (89 loc) 2.25 kB
/** * @license Apache-2.0 * * Copyright (c) 2018 The Stdlib Authors. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ 'use strict'; // MODULES // var isnan = require( '@stdlib/math/base/assert/is-nan' ); var pow = require( '@stdlib/math/base/special/pow' ); var ln = require( '@stdlib/math/base/special/ln' ); var NINF = require( '@stdlib/constants/float64/ninf' ); // MAIN // /** * Evaluates the logarithm of the probability density function (PDF) for a Fréchet distribution with shape `alpha`, scale `s`, and location `m` at a value `x`. * * @param {number} x - input value * @param {PositiveNumber} alpha - shape parameter * @param {PositiveNumber} s - scale parameter * @param {number} m - location parameter * @returns {number} evaluated logPDF * * @example * var y = logpdf( 10.0, 2.0, 3.0, 2.0 ); * // returns ~-3.489 * * @example * var y = logpdf( -2.0, 1.0, 3.0, -3.0 ); * // returns ~-1.901 * * @example * var y = logpdf( 0.0, 2.0, 1.0, 1.0 ); * // returns -Infinity * * @example * var y = logpdf( NaN, 2.0, 1.0, -1.0 ); * // returns NaN * * @example * var y = logpdf( 0.0, NaN, 1.0, -1.0 ); * // returns NaN * * @example * var y = logpdf( 0.0, 2.0, NaN, -1.0 ); * // returns NaN * * @example * var y = logpdf( 0.0, 2.0, 1.0, NaN ); * // returns NaN * * @example * var y = logpdf( 0.0, -1.0, 1.0, 0.0 ); * // returns NaN * * @example * var y = logpdf( 0.0, 1.0, -1.0, 0.0 ); * // returns NaN */ function logpdf( x, alpha, s, m ) { var z; if ( isnan( x ) || isnan( alpha ) || isnan( s ) || isnan( m ) || alpha <= 0.0 || s <= 0.0 ) { return NaN; } if ( x <= m ) { return NINF; } z = ( x - m ) / s; return ln( alpha/s ) - ( ( 1.0+alpha ) * ln( z ) ) - pow( z, -alpha ); } // EXPORTS // module.exports = logpdf;