UNPKG

@stdlib/stats

Version:

Standard library statistical functions.

94 lines (84 loc) 2.1 kB
/** * @license Apache-2.0 * * Copyright (c) 2018 The Stdlib Authors. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ 'use strict'; // MODULES // var kernelBetaincinv = require( '@stdlib/math/base/special/kernel-betaincinv' ); var isnan = require( '@stdlib/math/base/assert/is-nan' ); // MAIN // /** * Evaluates the quantile function for an F distribution with numerator degrees of freedom `d1` and denominator degrees of freedom `d2` at a probability `p`. * * @param {Probability} p - input value * @param {PositiveNumber} d1 - numerator degrees of freedom * @param {PositiveNumber} d2 - denominator degrees of freedom * @returns {number} evaluated quantile function * * @example * var y = quantile( 0.8, 1.0, 1.0 ); * // returns ~9.472 * * @example * var y = quantile( 0.5, 4.0, 2.0 ); * // returns ~1.207 * * @example * var y = quantile( 1.1, 1.0, 1.0 ); * // returns NaN * * @example * var y = quantile( -0.2, 1.0, 1.0 ); * // returns NaN * * @example * var y = quantile( NaN, 1.0, 1.0 ); * // returns NaN * * @example * var y = quantile( 0.5, NaN, 1.0 ); * // returns NaN * * @example * var y = quantile( 0.5, 1.0, NaN ); * // returns NaN * * @example * var y = quantile( 0.5, -1.0, 1.0 ); * // returns NaN * * @example * var y = quantile( 0.5, 1.0, -1.0 ); * // returns NaN */ function quantile( p, d1, d2 ) { var xs; if ( isnan( p ) || isnan( d1 ) || isnan( d2 ) || d1 <= 0.0 || d2 <= 0.0 || p < 0.0 || p > 1.0 ) { return NaN; } xs = kernelBetaincinv( d1/2.0, d2/2.0, p, 1.0 - p ); return d2 * xs[ 0 ] / ( d1 * xs[ 1 ] ); } // EXPORTS // module.exports = quantile;