UNPKG

@stdlib/stats

Version:

Standard library statistical functions.

109 lines (99 loc) 2.35 kB
/** * @license Apache-2.0 * * Copyright (c) 2018 The Stdlib Authors. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ 'use strict'; // MODULES // var isnan = require( '@stdlib/math/base/assert/is-nan' ); var PINF = require( '@stdlib/constants/float64/pinf' ); var ibetaDerivative = require( './ibeta_derivative.js' ); // MAIN // /** * Evaluates the probability density function (PDF) for an F distribution with numerator degrees of freedom `d1` and denominator degrees of freedom `d2` at a value `x`. * * @param {number} x - input value * @param {PositiveNumber} d1 - numerator degrees of freedom * @param {PositiveNumber} d2 - denominator degrees of freedom * @returns {number} evaluated PDF * * @example * var y = pdf( 2.0, 0.5, 1.0 ); * // returns ~0.057 * * @example * var y = pdf( 0.1, 1.0, 1.0 ); * // returns ~0.915 * * @example * var y = pdf( -1.0, 4.0, 2.0 ); * // returns 0.0 * * @example * var y = pdf( NaN, 1.0, 1.0 ); * // returns NaN * * @example * var y = pdf( 0.0, NaN, 1.0 ); * // returns NaN * * @example * var y = pdf( 0.0, 1.0, NaN ); * // returns NaN * * @example * var y = pdf( 2.0, 1.0, -1.0 ); * // returns NaN * * @example * var y = pdf( 2.0, -1.0, 1.0 ); * // returns NaN */ function pdf( x, d1, d2 ) { var v1x; var y; var z; if ( isnan( x ) || isnan( d1 ) || isnan( d2 ) || d1 <= 0.0 || d2 <= 0.0 ) { return NaN; } if ( x < 0.0 || x === PINF ) { return 0.0; } if ( x === 0.0 ) { if ( d1 < 2.0 ) { return PINF; } if ( d1 === 2.0 ) { return 1.0; } return 0.0; } v1x = d1 * x; if ( v1x > d2 ) { y = ( d2 * d1 ) / ( ( d2 + v1x ) * ( d2 + v1x ) ); return y * ibetaDerivative( d2 / ( d2+v1x ), d2/2.0, d1/2.0 ); } z = d2 + v1x; y = ((z * d1) - (x * d1 * d1)) / ( z * z ); return y * ibetaDerivative( v1x / ( d2+v1x ), d1/2.0, d2/2.0 ); } // EXPORTS // module.exports = pdf;