UNPKG

@stdlib/stats

Version:

Standard library statistical functions.

110 lines (99 loc) 2.47 kB
/** * @license Apache-2.0 * * Copyright (c) 2018 The Stdlib Authors. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ 'use strict'; // MODULES // var constantFunction = require( '@stdlib/utils/constant-function' ); var isnan = require( '@stdlib/math/base/assert/is-nan' ); var PINF = require( '@stdlib/constants/float64/pinf' ); var ibetaDerivative = require( './ibeta_derivative.js' ); // MAIN // /** * Returns a function for evaluating the probability density function (PDF) for an F distribution with numerator degrees of freedom `d1` and denominator degrees of freedom `d2`. * * @param {PositiveNumber} d1 - numerator degrees of freedom * @param {PositiveNumber} d2 - denominator degrees of freedom * @returns {Function} PDF * * @example * var pdf = factory( 6.0, 7.0 ); * var y = pdf( 7.0 ); * // returns ~0.004 * * y = pdf( 2.0 ); * // returns ~0.166 */ function factory( d1, d2 ) { var zeroVal; var d1by2; var d2by2; var d1d2; if ( isnan( d1 ) || isnan( d2 ) || d1 <= 0.0 || d2 <= 0.0 ) { return constantFunction( NaN ); } d1d2 = d1 * d2; d1by2 = d1 / 2.0; d2by2 = d2 / 2.0; zeroVal = 0.0; if ( d1 < 2.0 ) { zeroVal = PINF; } else if ( d1 === 2.0 ) { zeroVal = 1.0; } return pdf; /** * Evaluates the probability density function (PDF) for an F distribution. * * @private * @param {number} x - input value * @returns {number} evaluated PDF * * @example * var y = pdf( 2.3 ); * // returns <number> */ function pdf( x ) { var v1x; var y; var z; if ( isnan( x ) ) { return NaN; } if ( x < 0.0 || x === PINF ) { return 0.0; } if ( x === 0.0 ) { return zeroVal; } v1x = d1 * x; if ( v1x > d2 ) { y = d1d2 / ( ( d2 + v1x ) * ( d2 + v1x ) ); return y * ibetaDerivative( d2 / ( d2 + v1x ), d2by2, d1by2 ); } z = d2 + v1x; y = ((z * d1) - (x * d1 * d1)) / ( z * z ); return y * ibetaDerivative( d1 * x / ( d2 + v1x ), d1by2, d2by2 ); } } // EXPORTS // module.exports = factory;