UNPKG

@stdlib/stats

Version:

Standard library statistical functions.

92 lines (82 loc) 2.1 kB
/** * @license Apache-2.0 * * Copyright (c) 2018 The Stdlib Authors. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ 'use strict'; // MODULES // var isnan = require( '@stdlib/math/base/assert/is-nan' ); var gammaln = require( '@stdlib/math/base/special/gammaln' ); var ln = require( '@stdlib/math/base/special/ln' ); var NINF = require( '@stdlib/constants/float64/ninf' ); var PINF = require( '@stdlib/constants/float64/pinf' ); var LN2 = require( '@stdlib/constants/float64/ln-two' ); // MAIN // /** * Evaluates the natural logarithm of the probability density function (PDF) for a chi distribution with degrees of freedom `k` at a value `x`. * * @param {number} x - input value * @param {NonNegativeNumber} k - degrees of freedom * @returns {number} evaluated logPDF * * @example * var y = logpdf( 0.3, 4.0 ); * // returns ~-4.35 * * @example * var y = logpdf( 0.7, 0.7 ); * // returns ~-0.622 * * @example * var y = logpdf( -1.0, 0.5 ); * // returns -Infinity * * @example * var y = logpdf( 0.0, NaN ); * // returns NaN * * @example * var y = logpdf( NaN, 2.0 ); * // returns NaN * * @example * // Negative degrees of freedom: * var y = logpdf( 2.0, -1.0 ); * // returns NaN */ function logpdf( x, k ) { var out; var kh; if ( isnan( x ) || isnan( k ) || k < 0.0 ) { return NaN; } if ( k === 0.0 ) { // Point mass at 0... return ( x === 0.0 ) ? PINF : NINF; } if ( x < 0.0 || x === PINF ) { return NINF; } kh = k / 2.0; out = ( ( 1.0-kh ) * LN2 ) + ( ( k-1.0 ) * ln( x ) ) - ( (x*x) / 2.0 ); out -= gammaln( kh ); return out; } // EXPORTS // module.exports = logpdf;