UNPKG

@stdlib/stats

Version:

Standard library statistical functions.

73 lines (63 loc) 1.68 kB
/** * @license Apache-2.0 * * Copyright (c) 2018 The Stdlib Authors. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ 'use strict'; // MODULES // var isnan = require( '@stdlib/math/base/assert/is-nan' ); var skewness = require( './../../../../../base/dists/chi/skewness' ); var variance = require( './../../../../../base/dists/chi/variance' ); var mean = require( './../../../../../base/dists/chi/mean' ); var sqrt = require( '@stdlib/math/base/special/sqrt' ); // MAIN // /** * Returns the excess kurtosis of a chi distribution. * * @param {PositiveNumber} k - degrees of freedom * @returns {PositiveNumber} excess kurtosis * * @example * var v = kurtosis( 9.0 ); * // returns ~0.011 * * @example * var v = kurtosis( 1.0 ); * // returns ~0.869 * * @example * var v = kurtosis( -0.2 ); * // returns NaN * * @example * var v = kurtosis( NaN ); * // returns NaN */ function kurtosis( k ) { var sigma2; var sigma; var g1; var mu; if ( isnan( k ) || k <= 0.0 ) { return NaN; } sigma2 = variance( k ); sigma = sqrt( sigma2 ); mu = mean( k ); g1 = skewness( k ); return ( 2.0/sigma2 ) * ( 1.0 - ( mu*sigma*g1 ) - sigma2 ); } // EXPORTS // module.exports = kurtosis;