UNPKG

@stdlib/stats

Version:

Standard library statistical functions.

145 lines (133 loc) 3.28 kB
/** * @license Apache-2.0 * * Copyright (c) 2018 The Stdlib Authors. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ 'use strict'; // MODULES // var isNonNegativeInteger = require( '@stdlib/math/base/assert/is-nonnegative-integer' ); var erfcinv = require( '@stdlib/math/base/special/erfcinv' ); var isnan = require( '@stdlib/math/base/assert/is-nan' ); var round = require( '@stdlib/math/base/special/round' ); var sqrt = require( '@stdlib/math/base/special/sqrt' ); var cdf = require( './../../../../../base/dists/binomial/cdf' ); var SQRT2 = require( '@stdlib/constants/float64/sqrt-two' ); var PINF = require( '@stdlib/constants/float64/pinf' ); var searchLeft = require( './search_left.js' ); var searchRight = require( './search_right.js' ); // MAIN // /** * Evaluates the quantile function for a binomial distribution with number of trials `n` and success probability `p` at a probability `r`. * * @param {Probability} r - input value * @param {NonNegativeInteger} n - number of trials * @param {Probability} p - success probability * @returns {NonNegativeInteger} evaluated quantile function * * @example * var y = quantile( 0.4, 20, 0.2 ); * // returns 3 * * @example * var y = quantile( 0.8, 20, 0.2 ); * // returns 5 * * @example * var y = quantile( 0.5, 10, 0.4 ); * // returns 4 * * @example * var y = quantile( 0.0, 10, 0.4 ); * // returns 0 * * @example * var y = quantile( 1.0, 10, 0.4 ); * // returns 10 * * @example * var y = quantile( NaN, 20, 0.5 ); * // returns NaN * * @example * var y = quantile( 0.2, NaN, 0.5 ); * // returns NaN * * @example * var y = quantile( 0.2, 20, NaN ); * // returns NaN * * @example * var y = quantile( 0.5, 1.5, 0.5 ); * // returns NaN * * @example * var y = quantile( 0.5, -2.0, 0.5 ); * // returns NaN * * @example * var y = quantile( 0.5, 20, -1.0 ); * // returns NaN * * @example * var y = quantile( 0.5, 20, 1.5 ); * // returns NaN */ function quantile( r, n, p ) { var sigmaInv; var guess; var sigma; var corr; var mu; var x2; var x; if ( isnan( r ) || isnan( n ) || isnan( p ) || r < 0.0 || r > 1.0 || p < 0.0 || p > 1.0 || !isNonNegativeInteger( n ) || n === PINF ) { return NaN; } if ( r === 1.0 || p === 1.0 ) { return n; } if ( r === 0.0 || p === 0.0 || n === 0 ) { return 0.0; } // Cornish-Fisher expansion: mu = n * p; sigma = sqrt( n * p * ( 1.0-p ) ); sigmaInv = 1.0 / sigma; if ( r < 0.5 ) { x = -erfcinv( 2.0 * r ) * SQRT2; } else { x = erfcinv( 2.0 * ( 1.0-r ) ) * SQRT2; } x2 = x * x; // Skewness correction: corr = x + ( sigmaInv * ( x2-1.0 ) / 6.0 ); guess = round( mu + (sigma * corr) ); if ( cdf( guess, n, p ) >= r ) { return searchLeft( guess, r, n, p ); } return searchRight( guess, r, n, p ); } // EXPORTS // module.exports = quantile;