UNPKG

@stdlib/stats

Version:

Standard library statistical functions.

128 lines (114 loc) 3.17 kB
/** * @license Apache-2.0 * * Copyright (c) 2018 The Stdlib Authors. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ 'use strict'; // MODULES // var isNonNegativeInteger = require( '@stdlib/math/base/assert/is-nonnegative-integer' ); var constantFunction = require( '@stdlib/utils/constant-function' ); var degenerate = require( './../../../../../base/dists/degenerate/quantile' ).factory; var erfcinv = require( '@stdlib/math/base/special/erfcinv' ); var isnan = require( '@stdlib/math/base/assert/is-nan' ); var round = require( '@stdlib/math/base/special/round' ); var sqrt = require( '@stdlib/math/base/special/sqrt' ); var cdf = require( './../../../../../base/dists/binomial/cdf' ); var SQRT2 = require( '@stdlib/constants/float64/sqrt-two' ); var PINF = require( '@stdlib/constants/float64/pinf' ); var searchLeft = require( './search_left.js' ); var searchRight = require( './search_right.js' ); // MAIN // /** * Returns a function for evaluating the quantile function for a binomial distribution with number of trials `n` and success probability `p`. * * @param {NonNegativeInteger} n - number of trials * @param {Probability} p - success probability * @returns {Function} quantile function * * @example * var quantile = factory( 10, 0.5 ); * var y = quantile( 0.1 ); * // returns 3 * * y = quantile( 0.9 ); * // returns 7 */ function factory( n, p ) { var sigmaInv; var sigma; var mu; if ( isnan( n ) || isnan( p ) || !isNonNegativeInteger( n ) || n === PINF || p < 0.0 || p > 1.0 ) { return constantFunction( NaN ); } if ( p === 0.0 || n === 0.0 ) { return degenerate( 0.0 ); } if ( p === 1.0 ) { return degenerate( n ); } mu = n * p; sigma = sqrt( n * p * ( 1.0-p ) ); sigmaInv = 1.0 / sigma; return quantile; /** * Evaluates the quantile function for a binomial distribution. * * @private * @param {Probability} r - input value * @returns {NonNegativeInteger} evaluated quantile function * * @example * var y = quantile( 0.3 ); * // returns <number> */ function quantile( r ) { var guess; var corr; var x2; var x; if ( isnan( r ) || r < 0.0 || r > 1.0 ) { return NaN; } if ( r === 0.0 ) { return 0; } if ( r === 1.0 ) { return n; } // Cornish-Fisher expansion: if ( r < 0.5 ) { x = -erfcinv( 2.0 * r ) * SQRT2; } else { x = erfcinv( 2.0 * ( 1.0-r ) ) * SQRT2; } x2 = x * x; // Skewness correction: corr = x + ( sigmaInv * ( x2-1.0 ) / 6.0 ); guess = round( mu + (sigma * corr) ); if ( cdf( guess, n, p ) >= r ) { return searchLeft( guess, r, n, p ); } return searchRight( guess, r, n, p ); } } // EXPORTS // module.exports = factory;