UNPKG

@stdlib/stats

Version:

Standard library statistical functions.

128 lines (118 loc) 2.69 kB
/** * @license Apache-2.0 * * Copyright (c) 2018 The Stdlib Authors. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ 'use strict'; // MODULES // var betaln = require( '@stdlib/math/base/special/betaln' ); var isnan = require( '@stdlib/math/base/assert/is-nan' ); var log1p = require( '@stdlib/math/base/special/log1p' ); var exp = require( '@stdlib/math/base/special/exp' ); var ln = require( '@stdlib/math/base/special/ln' ); var PINF = require( '@stdlib/constants/float64/pinf' ); // MAIN // /** * Evaluates the probability density function (PDF) for a beta distribution with first shape parameter `alpha` and second shape parameter `beta` at a value `x`. * * @param {number} x - input value * @param {PositiveNumber} alpha - first shape parameter * @param {PositiveNumber} beta - second shape parameter * @returns {number} evaluated PDF * * @example * var y = pdf( 0.5, 1.0, 1.0 ); * // returns 1.0 * * @example * var y = pdf( 0.5, 2.0, 4.0 ); * // returns 1.25 * * @example * var y = pdf( 0.2, 2.0, 2.0 ); * // returns ~0.96 * * @example * var y = pdf( 0.8, 4.0, 4.0 ); * // returns ~0.573 * * @example * var y = pdf( -0.5, 4.0, 2.0 ); * // returns 0.0 * * @example * var y = pdf( 1.5, 4.0, 2.0 ); * // returns 0.0 * * @example * var y = pdf( 0.5, -1.0, 0.5 ); * // returns NaN * * @example * var y = pdf( 0.5, 0.5, -1.0 ); * // returns NaN * * @example * var y = pdf( NaN, 1.0, 1.0 ); * // returns NaN * * @example * var y = pdf( 0.5, NaN, 1.0 ); * // returns NaN * * @example * var y = pdf( 0.5, 1.0, NaN ); * // returns NaN */ function pdf( x, alpha, beta ) { var out; if ( isnan( x ) || isnan( alpha ) || isnan( beta ) || alpha <= 0.0 || beta <= 0.0 ) { return NaN; } if ( x < 0.0 || x > 1.0 ) { // Support of the Beta distribution: [0,1] return 0.0; } if ( x === 0.0 ) { if ( alpha < 1.0 ) { return PINF; } if ( alpha > 1.0 ) { return 0.0; } return beta; } if ( x === 1.0 ) { if ( beta < 1.0 ) { return PINF; } if ( beta > 1.0 ) { return 0.0; } return alpha; } out = ( alpha-1.0 ) * ln( x ); out += ( beta-1.0 ) * log1p( -x ); out -= betaln( alpha, beta ); return exp( out ); } // EXPORTS // module.exports = pdf;