@stdlib/stats-incr-apcorr
Version:
Compute a sample absolute Pearson product-moment correlation coefficient.
273 lines (166 loc) • 10.7 kB
Markdown
<!--
@license Apache-2.0
Copyright (c) 2018 The Stdlib Authors.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
-->
<details>
<summary>
About stdlib...
</summary>
<p>We believe in a future in which the web is a preferred environment for numerical computation. To help realize this future, we've built stdlib. stdlib is a standard library, with an emphasis on numerical and scientific computation, written in JavaScript (and C) for execution in browsers and in Node.js.</p>
<p>The library is fully decomposable, being architected in such a way that you can swap out and mix and match APIs and functionality to cater to your exact preferences and use cases.</p>
<p>When you use stdlib, you can be absolutely certain that you are using the most thorough, rigorous, well-written, studied, documented, tested, measured, and high-quality code out there.</p>
<p>To join us in bringing numerical computing to the web, get started by checking us out on <a href="https://github.com/stdlib-js/stdlib">GitHub</a>, and please consider <a href="https://opencollective.com/stdlib">financially supporting stdlib</a>. We greatly appreciate your continued support!</p>
</details>
# incrapcorr
[![NPM version][npm-image]][npm-url] [![Build Status][test-image]][test-url] [![Coverage Status][coverage-image]][coverage-url] <!-- [![dependencies][dependencies-image]][dependencies-url] -->
> Compute a sample absolute [Pearson product-moment correlation coefficient][pearson-correlation] incrementally.
<section class="intro">
The [Pearson product-moment correlation coefficient][pearson-correlation] between random variables `X` and `Y` is defined as
<!-- <equation class="equation" label="eq:pearson_correlation_coefficient" align="center" raw="\rho_{X,Y} = \frac{\operatorname{cov}(X,Y)}{\sigma_X \sigma_Y}" alt="Equation for the Pearson product-moment correlation coefficient."> -->
<div class="equation" align="center" data-raw-text="\rho_{X,Y} = \frac{\operatorname{cov}(X,Y)}{\sigma_X \sigma_Y}" data-equation="eq:pearson_correlation_coefficient">
<img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@80f96253bf726f33bc71d8eb68037ab203ae4cf9/lib/node_modules/@stdlib/stats/incr/apcorr/docs/img/equation_pearson_correlation_coefficient.svg" alt="Equation for the Pearson product-moment correlation coefficient.">
<br>
</div> -->
<!-- </equation> -->
where the numerator is the [covariance][covariance] and the denominator is the product of the respective standard deviations.
For a sample of size `n`, the sample [Pearson product-moment correlation coefficient][pearson-correlation] is defined as
<!-- <equation class="equation" label="eq:sample_pearson_correlation_coefficient" align="center" raw="r = \frac{\displaystyle\sum_{i=0}^{n-1} (x_i - \bar{x})(y_i - \bar{y})}{\displaystyle\sqrt{\sum_{i=0}^{n-1} (x_i - \bar{x})^2} \sqrt{\sum_{i=0}^{n-1} (y_i - \bar{y})^2}}" alt="Equation for the sample Pearson product-moment correlation coefficient."> -->
<!-- <div class="equation" align="center" data-raw-text="r = \frac{\displaystyle\sum_{i=0}^{n-1} (x_i - \bar{x})(y_i - \bar{y})}{\displaystyle\sqrt{\sum_{i=0}^{n-1} (x_i - \bar{x})^2} \sqrt{\sum_{i=0}^{n-1} (y_i - \bar{y})^2}}" data-equation="eq:sample_pearson_correlation_coefficient">
<img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@80f96253bf726f33bc71d8eb68037ab203ae4cf9/lib/node_modules/@stdlib/stats/incr/apcorr/docs/img/equation_sample_pearson_correlation_coefficient.svg" alt="Equation for the sample Pearson product-moment correlation coefficient.">
<br>
</div>
<!-- </equation> -->
The sample **absolute** [Pearson product-moment correlation coefficient][pearson-correlation] is thus defined as the absolute value of the sample [Pearson product-moment correlation coefficient][pearson-correlation].
</section>
<!-- /.intro -->
<section class="installation">
## Installation
```bash
npm install @stdlib/stats-incr-apcorr
```
</section>
<section class="usage">
## Usage
```javascript
var incrapcorr = require( '@stdlib/stats-incr-apcorr' );
```
#### incrapcorr( \[mx, my] )
Returns an accumulator `function` which incrementally computes a sample absolute [Pearson product-moment correlation coefficient][pearson-correlation].
```javascript
var accumulator = incrapcorr();
```
If the means are already known, provide `mx` and `my` arguments.
```javascript
var accumulator = incrapcorr( 3.0, -5.5 );
```
#### accumulator( \[x, y] )
If provided input value `x` and `y`, the accumulator function returns an updated accumulated value. If not provided input values `x` and `y`, the accumulator function returns the current accumulated value.
```javascript
var accumulator = incrapcorr();
var v = accumulator( 2.0, 1.0 );
// returns 0.0
v = accumulator( 1.0, -5.0 );
// returns 1.0
v = accumulator( 3.0, 3.14 );
// returns ~0.965
v = accumulator();
// returns ~0.965
```
</section>
<!-- /.usage -->
<section class="notes">
## Notes
- Input values are **not** type checked. If provided `NaN` or a value which, when used in computations, results in `NaN`, the accumulated value is `NaN` for **all** future invocations. If non-numeric inputs are possible, you are advised to type check and handle accordingly **before** passing the value to the accumulator function.
- In comparison to the sample [Pearson product-moment correlation coefficient][pearson-correlation], the sample absolute [Pearson product-moment correlation coefficient][pearson-correlation] is useful when only concerned with the strength of the correlation and not the direction.
</section>
<!-- /.notes -->
<section class="examples">
## Examples
<!-- eslint no-undef: "error" -->
```javascript
var randu = require( '@stdlib/random-base-randu' );
var incrapcorr = require( '@stdlib/stats-incr-apcorr' );
var accumulator;
var x;
var y;
var i;
// Initialize an accumulator:
accumulator = incrapcorr();
// For each simulated datum, update the sample absolute correlation coefficient...
for ( i = 0; i < 100; i++ ) {
x = randu() * 100.0;
y = randu() * 100.0;
accumulator( x, y );
}
console.log( accumulator() );
```
</section>
<!-- /.examples -->
<!-- Section for related `stdlib` packages. Do not manually edit this section, as it is automatically populated. -->
<section class="related">
* * *
## See Also
- <span class="package-name">[`@stdlib/stats-incr/mapcorr`][@stdlib/stats/incr/mapcorr]</span><span class="delimiter">: </span><span class="description">compute a moving sample absolute Pearson product-moment correlation coefficient incrementally.</span>
- <span class="package-name">[`@stdlib/stats-incr/pcorr`][@stdlib/stats/incr/pcorr]</span><span class="delimiter">: </span><span class="description">compute a sample Pearson product-moment correlation coefficient.</span>
- <span class="package-name">[`@stdlib/stats-incr/pcorr2`][@stdlib/stats/incr/pcorr2]</span><span class="delimiter">: </span><span class="description">compute a squared sample Pearson product-moment correlation coefficient.</span>
</section>
<!-- /.related -->
<!-- Section for all links. Make sure to keep an empty line after the `section` element and another before the `/section` close. -->
<section class="main-repo" >
* * *
## Notice
This package is part of [stdlib][stdlib], a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.
For more information on the project, filing bug reports and feature requests, and guidance on how to develop [stdlib][stdlib], see the main project [repository][stdlib].
#### Community
[![Chat][chat-image]][chat-url]
---
## License
See [LICENSE][stdlib-license].
## Copyright
Copyright © 2016-2024. The Stdlib [Authors][stdlib-authors].
</section>
<!-- /.stdlib -->
<!-- Section for all links. Make sure to keep an empty line after the `section` element and another before the `/section` close. -->
<section class="links">
[npm-image]: http://img.shields.io/npm/v/@stdlib/stats-incr-apcorr.svg
[npm-url]: https://npmjs.org/package/@stdlib/stats-incr-apcorr
[test-image]: https://github.com/stdlib-js/stats-incr-apcorr/actions/workflows/test.yml/badge.svg?branch=v0.2.2
[test-url]: https://github.com/stdlib-js/stats-incr-apcorr/actions/workflows/test.yml?query=branch:v0.2.2
[coverage-image]: https://img.shields.io/codecov/c/github/stdlib-js/stats-incr-apcorr/main.svg
[coverage-url]: https://codecov.io/github/stdlib-js/stats-incr-apcorr?branch=main
<!--
[dependencies-image]: https://img.shields.io/david/stdlib-js/stats-incr-apcorr.svg
[dependencies-url]: https://david-dm.org/stdlib-js/stats-incr-apcorr/main
-->
[chat-image]: https://img.shields.io/gitter/room/stdlib-js/stdlib.svg
[chat-url]: https://app.gitter.im/#/room/#stdlib-js_stdlib:gitter.im
[stdlib]: https://github.com/stdlib-js/stdlib
[stdlib-authors]: https://github.com/stdlib-js/stdlib/graphs/contributors
[umd]: https://github.com/umdjs/umd
[es-module]: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Modules
[deno-url]: https://github.com/stdlib-js/stats-incr-apcorr/tree/deno
[deno-readme]: https://github.com/stdlib-js/stats-incr-apcorr/blob/deno/README.md
[umd-url]: https://github.com/stdlib-js/stats-incr-apcorr/tree/umd
[umd-readme]: https://github.com/stdlib-js/stats-incr-apcorr/blob/umd/README.md
[esm-url]: https://github.com/stdlib-js/stats-incr-apcorr/tree/esm
[esm-readme]: https://github.com/stdlib-js/stats-incr-apcorr/blob/esm/README.md
[branches-url]: https://github.com/stdlib-js/stats-incr-apcorr/blob/main/branches.md
[stdlib-license]: https://raw.githubusercontent.com/stdlib-js/stats-incr-apcorr/main/LICENSE
[pearson-correlation]: https://en.wikipedia.org/wiki/Pearson_correlation_coefficient
[covariance]: https://en.wikipedia.org/wiki/Covariance
<!-- <related-links> -->
[@stdlib/stats/incr/mapcorr]: https://www.npmjs.com/package/@stdlib/stats-incr-mapcorr
[@stdlib/stats/incr/pcorr]: https://www.npmjs.com/package/@stdlib/stats-incr-pcorr
[@stdlib/stats/incr/pcorr2]: https://www.npmjs.com/package/@stdlib/stats-incr-pcorr2
<!-- </related-links> -->
</section>
<!-- /.links -->