UNPKG

@stdlib/stats-base-dists-poisson-quantile

Version:

Poisson distribution quantile function.

114 lines (103 loc) 2.63 kB
/** * @license Apache-2.0 * * Copyright (c) 2018 The Stdlib Authors. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ 'use strict'; // MODULES // var erfcinv = require( '@stdlib/math-base-special-erfcinv' ); var isnan = require( '@stdlib/math-base-assert-is-nan' ); var round = require( '@stdlib/math-base-special-round' ); var sqrt = require( '@stdlib/math-base-special-sqrt' ); var cdf = require( '@stdlib/stats-base-dists-poisson-cdf' ); var SQRT2 = require( '@stdlib/constants-float64-sqrt-two' ); var PINF = require( '@stdlib/constants-float64-pinf' ); var search = require( './search.js' ); // MAIN // /** * Evaluates the quantile function for a Poisson distribution with mean parameter `lambda` at a probability `p`. * * @param {Probability} p - input value * @param {NonNegativeNumber} lambda - mean parameter * @returns {NonNegativeInteger} evaluated quantile function * * @example * var y = quantile( 0.5, 2.0 ); * // returns 2 * * @example * var y = quantile( 0.9, 4.0 ); * // returns 7 * * @example * var y = quantile( 0.1, 200.0 ); * // returns 182 * * @example * var y = quantile( 1.1, 0.0 ); * // returns NaN * * @example * var y = quantile( -0.2, 0.0 ); * // returns NaN * * @example * var y = quantile( NaN, 0.5 ); * // returns NaN * * @example * var y = quantile( 0.0, NaN ); * // returns NaN */ function quantile( p, lambda ) { var sigmaInv; var guess; var sigma; var corr; var x2; var x; if ( isnan( lambda ) || lambda < 0.0 ) { return NaN; } if ( isnan( p ) || p < 0.0 || p > 1.0 ) { return NaN; } if ( lambda === 0.0 ) { return 0.0; } if ( p === 0.0 ) { return 0.0; } if ( p === 1.0 ) { return PINF; } // Cornish-Fisher expansion: sigma = sqrt( lambda ); sigmaInv = 1.0 / sigma; if ( p < 0.5 ) { x = -erfcinv( 2.0 * p ) * SQRT2; } else { x = erfcinv( 2.0 * ( 1.0 - p ) ) * SQRT2; } x2 = x * x; // Skewness correction: corr = x + (sigmaInv * ( x2 - 1.0 ) / 6.0); guess = round( lambda + (sigma * corr) ); return ( cdf( guess, lambda ) >= p ) ? search.left( guess, p, lambda ) : search.right( guess, p, lambda ); } // EXPORTS // module.exports = quantile;