UNPKG

@stdlib/stats-base-dists-cosine-cdf

Version:

Raised cosine distribution cumulative distribution function (CDF).

88 lines (77 loc) 2.1 kB
/** * @license Apache-2.0 * * Copyright (c) 2018 The Stdlib Authors. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ 'use strict'; // MODULES // var constantFunction = require( '@stdlib/utils-constant-function' ); var degenerate = require( '@stdlib/stats-base-dists-degenerate-cdf' ).factory; var isnan = require( '@stdlib/math-base-assert-is-nan' ); var sinpi = require( '@stdlib/math-base-special-sinpi' ); var PI = require( '@stdlib/constants-float64-pi' ); // MAIN // /** * Returns a function for evaluating the cumulative distribution function (CDF) for a raised cosine distribution with location parameter `mu` and scale parameter `s`. * * @param {number} mu - location parameter * @param {NonNegativeNumber} s - scale parameter * @returns {Function} CDF * * @example * var cdf = factory( 3.0, 1.5 ); * * var y = cdf( 1.9 ); * // returns ~0.015 * * y = cdf( 4.0 ); * // returns ~0.971 */ function factory( mu, s ) { if ( isnan( mu ) || isnan( s ) || s < 0.0 ) { return constantFunction( NaN ); } if ( s === 0.0 ) { return degenerate( mu ); } return cdf; /** * Evaluates the cumulative distribution function (CDF) for a raised cosine distribution. * * @private * @param {number} x - input value * @returns {Probability} evaluated CDF * * @example * var y = cdf( 2.0 ); * // returns <number> */ function cdf( x ) { var z; if ( isnan( x ) ) { return NaN; } if ( x < mu - s ) { return 0.0; } if ( x > mu + s ) { return 1.0; } z = ( x - mu ) / s; return ( 1.0 + z + ( sinpi( z ) / PI ) ) / 2.0; } } // EXPORTS // module.exports = factory;