UNPKG

@stdlib/stats-base-dists-beta

Version:
538 lines (515 loc) 11 kB
/* * @license Apache-2.0 * * Copyright (c) 2021 The Stdlib Authors. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ // TypeScript Version: 4.1 /* eslint-disable max-lines */ import cdf = require( '@stdlib/stats-base-dists-beta-cdf' ); import Beta = require( '@stdlib/stats-base-dists-beta-ctor' ); import entropy = require( '@stdlib/stats-base-dists-beta-entropy' ); import kurtosis = require( '@stdlib/stats-base-dists-beta-kurtosis' ); import logcdf = require( '@stdlib/stats-base-dists-beta-logcdf' ); import logpdf = require( '@stdlib/stats-base-dists-beta-logpdf' ); import mean = require( '@stdlib/stats-base-dists-beta-mean' ); import median = require( '@stdlib/stats-base-dists-beta-median' ); import mgf = require( '@stdlib/stats-base-dists-beta-mgf' ); import mode = require( '@stdlib/stats-base-dists-beta-mode' ); import pdf = require( '@stdlib/stats-base-dists-beta-pdf' ); import quantile = require( '@stdlib/stats-base-dists-beta-quantile' ); import skewness = require( '@stdlib/stats-base-dists-beta-skewness' ); import stdev = require( '@stdlib/stats-base-dists-beta-stdev' ); import variance = require( '@stdlib/stats-base-dists-beta-variance' ); /** * Interface describing the `beta` namespace. */ interface Namespace { /** * Beta distribution cumulative distribution function (CDF). * * @param x - input value * @param alpha - first shape parameter * @param beta - second shape parameter * @returns evaluated CDF * * @example * var y = ns.cdf( 0.5, 1.0, 1.0 ); * // returns 0.5 * * y = ns.cdf( 0.5, 2.0, 4.0 ); * // returns ~0.813 * * var myCDF = ns.cdf.factory( 0.5, 0.5 ); * * y = myCDF( 0.8 ); * // returns ~0.705 * * y = myCDF( 0.3 ); * // returns ~0.369 */ cdf: typeof cdf; /** * Beta distribution. */ Beta: typeof Beta; /** * Returns the differential entropy of a beta distribution. * * ## Notes * * - If `alpha <= 0` or `beta <= 0`, the function returns `NaN`. * * @param alpha - first shape parameter * @param beta - second shape parameter * @returns differential entropy * * @example * var v = ns.entropy( 1.0, 1.0 ); * // returns 0.0 * * @example * var v = ns.entropy( 4.0, 12.0 ); * // returns ~-0.869 * * @example * var v = ns.entropy( 8.0, 2.0 ); * // returns ~-0.795 * * @example * var v = ns.entropy( 1.0, -0.1 ); * // returns NaN * * @example * var v = ns.entropy( -0.1, 1.0 ); * // returns NaN * * @example * var v = ns.entropy( 2.0, NaN ); * // returns NaN * * @example * var v = ns.entropy( NaN, 2.0 ); * // returns NaN */ entropy: typeof entropy; /** * Returns the excess kurtosis of a beta distribution. * * ## Notes * * - If `alpha <= 0` or `beta <= 0`, the function returns `NaN`. * * @param alpha - first shape parameter * @param beta - second shape parameter * @returns excess kurtosis * * @example * var v = ns.kurtosis( 1.0, 1.0 ); * // returns -1.2 * * @example * var v = ns.kurtosis( 4.0, 12.0 ); * // returns ~0.082 * * @example * var v = ns.kurtosis( 8.0, 2.0 ); * // returns ~0.49 * * @example * var v = ns.kurtosis( 1.0, -0.1 ); * // returns NaN * * @example * var v = ns.kurtosis( -0.1, 1.0 ); * // returns NaN * * @example * var v = ns.kurtosis( 2.0, NaN ); * // returns NaN * * @example * var v = ns.kurtosis( NaN, 2.0 ); * // returns NaN */ kurtosis: typeof kurtosis; /** * Beta distribution logarithm of cumulative distribution function (CDF). * * @param x - input value * @param alpha - first shape parameter * @param beta - second shape parameter * @returns evaluated logCDF * * @example * var y = ns.logcdf( 5.0, 0.0, 4.0 ); * // returns 0.0 * * var mylogcdf = ns.logcdf.factory( 0.0, 10.0 ); * y = mylogcdf( 0.5 ); * // returns ~-1.938 * * y = mylogcdf( 8.0 ); * // returns ~-0.35 */ logcdf: typeof logcdf; /** * Beta distribution natural logarithm of the probability density function (logPDF). * * @param x - input value * @param alpha - first shape parameter * @param beta - second shape parameter * @returns evaluated logPDF * * @example * var y = ns.logpdf( 0.5, 1.0, 1.0 ); * // returns 0.0 * * y = ns.logpdf( 0.5, 2.0, 4.0 ); * // returns ~0.223 * * var mylogpdf = ns.logpdf.factory( 0.5, 0.5 ); * * y = mylogpdf( 0.8 ); * // returns ~-0.228 * * y = mylogpdf( 0.3 ); * // returns ~-0.364 */ logpdf: typeof logpdf; /** * Returns the expected value of a beta distribution. * * ## Notes * * - If `alpha <= 0` or `beta <= 0`, the function returns `NaN`. * * @param alpha - first shape parameter * @param beta - second shape parameter * @returns expected value * * @example * var v = ns.mean( 1.0, 1.0 ); * // returns 0.5 * * @example * var v = ns.mean( 4.0, 12.0 ); * // returns 0.25 * * @example * var v = ns.mean( 8.0, 2.0 ); * // returns 0.8 * * @example * var v = ns.mean( 1.0, -0.1 ); * // returns NaN * * @example * var v = ns.mean( -0.1, 1.0 ); * // returns NaN * * @example * var v = ns.mean( 2.0, NaN ); * // returns NaN * * @example * var v = ns.mean( NaN, 2.0 ); * // returns NaN */ mean: typeof mean; /** * Returns the median of a beta distribution. * * ## Notes * * - If `alpha <= 0` or `beta <= 0`, the function returns `NaN`. * * @param alpha - first shape parameter * @param beta - second shape parameter * @returns median * * @example * var v = ns.median( 1.0, 1.0 ); * // returns 0.5 * * @example * var v = ns.median( 4.0, 12.0 ); * // returns ~0.239 * * @example * var v = ns.median( 8.0, 2.0 ); * // returns ~0.820 * * @example * var v = ns.median( 1.0, -0.1 ); * // returns NaN * * @example * var v = ns.median( -0.1, 1.0 ); * // returns NaN * * @example * var v = ns.median( 2.0, NaN ); * // returns NaN * * @example * var v = ns.median( NaN, 2.0 ); * // returns NaN */ median: typeof median; /** * Beta distribution moment-generating function (MGF). * * @param t - input value * @param alpha - first shape parameter * @param beta - second shape parameter * @returns evaluated MGF * * @example * var y = ns.mgf( 0.5, 1.0, 1.0 ); * // returns ~1.297 * * y = ns.mgf( 0.5, 2.0, 4.0 ); * // returns ~1.186 * * y = ns.mgf( 3.0, 2.0, 2.0 ); * // returns ~5.575 * * y = ns.mgf( -0.8, 4.0, 4.0 ); * // returns ~0.676 * * var myMGF = ns.mgf.factory( 0.5, 0.5 ); * * y = myMGF( 0.8 ); * // returns ~1.522 * * y = myMGF( 0.3 ); * // returns ~1.168 */ mgf: typeof mgf; /** * Returns the mode of a beta distribution. * * ## Notes * * - If `alpha <= 0` or `beta <= 0`, the function returns `NaN`. * * @param alpha - first shape parameter * @param beta - second shape parameter * @returns mode * * @example * var v = ns.mode( 4.0, 12.0 ); * // returns ~0.214 * * @example * var v = ns.mode( 8.0, 2.0 ); * // returns ~0.875 * * @example * var v = ns.mode( 1.0, 1.0 ); * // returns NaN * * @example * var v = ns.mode( 2.0, 0.8 ); * // returns NaN * * @example * var v = ns.mode( -0.1, 2.0 ); * // returns NaN * * @example * var v = ns.mode( 2.0, NaN ); * // returns NaN * * @example * var v = ns.mode( NaN, 2.0 ); * // returns NaN */ mode: typeof mode; /** * Beta distribution probability density function (PDF). * * @param x - input value * @param alpha - first shape parameter * @param beta - second shape parameter * @returns evaluated PDF * * @example * var y = ns.pdf( 0.5, 1.0, 1.0 ); * // returns 1.0 * * y = ns.pdf( 0.5, 2.0, 4.0 ); * // returns 1.25 * * var myPDF = ns.pdf.factory( 0.5, 0.5 ); * * y = myPDF( 0.8 ); * // returns ~0.796 * * y = myPDF( 0.3 ); * // returns ~0.695 */ pdf: typeof pdf; /** * Beta distribution quantile function. * * @param p - input value * @param alpha - first shape parameter * @param beta - second shape parameter * @returns evaluated quantile function * * @example * var y = ns.quantile( 0.8, 2.0, 1.0 ); * // returns ~0.894 * * y = ns.quantile( 0.5, 4.0, 2.0 ); * // returns ~0.686 * * var myQuantile = ns.quantile.factory( 2.0, 2.0 ); * * y = myQuantile( 0.8 ); * // returns ~0.713 * * y = myQuantile( 0.4 ); * // returns ~0.5 */ quantile: typeof quantile; /** * Returns the skewness of a beta distribution. * * ## Notes * * - If `alpha <= 0` or `beta <= 0`, the function returns `NaN`. * * @param alpha - first shape parameter * @param beta - second shape parameter * @returns skewness * * @example * var v = ns.skewness( 1.0, 1.0 ); * // returns 0.0 * * @example * var v = ns.skewness( 4.0, 12.0 ); * // returns ~0.529 * * @example * var v = ns.skewness( 8.0, 2.0 ); * // returns ~-0.829 * * @example * var v = ns.skewness( 1.0, -0.1 ); * // returns NaN * * @example * var v = ns.skewness( -0.1, 1.0 ); * // returns NaN * * @example * var v = ns.skewness( 2.0, NaN ); * // returns NaN * * @example * var v = ns.skewness( NaN, 2.0 ); * // returns NaN */ skewness: typeof skewness; /** * Returns the standard deviation of a beta distribution. * * ## Notes * * - If `alpha <= 0` or `beta <= 0`, the function returns `NaN`. * * @param alpha - first shape parameter * @param beta - second shape parameter * @returns standard deviation * * @example * var v = ns.stdev( 1.0, 1.0 ); * // returns ~0.289 * * @example * var v = ns.stdev( 4.0, 12.0 ); * // returns ~0.105 * * @example * var v = ns.stdev( 8.0, 2.0 ); * // returns ~0.121 * * @example * var v = ns.stdev( 1.0, -0.1 ); * // returns NaN * * @example * var v = ns.stdev( -0.1, 1.0 ); * // returns NaN * * @example * var v = ns.stdev( 2.0, NaN ); * // returns NaN * * @example * var v = ns.stdev( NaN, 2.0 ); * // returns NaN */ stdev: typeof stdev; /** * Returns the variance of a beta distribution. * * ## Notes * * - If `alpha <= 0` or `beta <= 0`, the function returns `NaN`. * * @param alpha - first shape parameter * @param beta - second shape parameter * @returns variance * * @example * var v = ns.variance( 1.0, 1.0 ); * // returns ~0.083 * * @example * var v = ns.variance( 4.0, 12.0 ); * // returns ~0.011 * * @example * var v = ns.variance( 8.0, 2.0 ); * // returns ~0.015 * * @example * var v = ns.variance( 1.0, -0.1 ); * // returns NaN * * @example * var v = ns.variance( -0.1, 1.0 ); * // returns NaN * * @example * var v = ns.variance( 2.0, NaN ); * // returns NaN * * @example * var v = ns.variance( NaN, 2.0 ); * // returns NaN */ variance: typeof variance; } /** * Beta distribution. */ declare var ns: Namespace; // EXPORTS // export = ns;