UNPKG

@stdlib/ml

Version:

Machine learning algorithms.

192 lines (164 loc) 5.32 kB
/** * @license Apache-2.0 * * Copyright (c) 2018 The Stdlib Authors. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ 'use strict'; /* * The weight vector implementation was inspired by the [sofia-ml]{@link https://code.google.com/archive/p/sofia-ml/} library. */ // MODULES // var isPositiveInteger = require( '@stdlib/assert/is-positive-integer' ); var isBoolean = require( '@stdlib/assert/is-boolean' ); var setReadOnly = require( '@stdlib/utils/define-nonenumerable-read-only-property' ); var format = require( '@stdlib/string/format' ); var pow = require( '@stdlib/math/base/special/pow' ); var dot = require( './dot.js' ); // VARIABLES // var MIN_SCALE = 1.0e-11; // FUNCTIONS // /** * Scale elements of the weight vector by the supplied factor. * * @private * @param {number} factor - scaling factor * @throws {RangeError} `lambda` times `eta` must be large enough for the scaling weight to be nonnegative */ function scaleTo( factor ) { /* eslint-disable no-invalid-this */ var i; if ( this.scale < MIN_SCALE ) { // Scale vector to one: for ( i = 0; i < this.nWeights; i++ ) { this._data[ i ] *= this.scale; } this.scale = 1.0; } this.norm *= pow( factor, 2 ); if ( factor > 0.0 ) { this.scale *= factor; } else { throw new RangeError( format( 'unexpected error. Scaling weight vector by nonpositive value, likely due to too large value of eta * lambda. Value: `%f`.', factor ) ); } } /** * Adds vector `x` to the weight vector after scaling its elements. * * @private * @param {NumericArray} x - vector to add * @param {number} [xScale=1.0] - number to scale the elements of x with */ function add( x, xScale ) { /* eslint-disable no-invalid-this */ var xscaled; var inner; var i; inner = 0.0; if ( xScale === void 0 ) { xScale = 1.0; } for ( i = 0; i < x.length; i++ ) { xscaled = x[ i ] * xScale; inner += this._data[i] * xscaled; this._data[ i ] = this._data[ i ] + ( xscaled / this.scale ); } // If an intercept is assumed, treat `x` as containing one additional element equal to one... if ( this.intercept ) { xscaled = 1.0 * xScale; inner += this._data[ i ] * xscaled; this._data[ i ] = this._data[ i ] + ( xscaled / this.scale ); } this.norm += ( ( dot( x, x ) + ( ( this.intercept ) ? 1.0 : 0.0 ) ) * pow( xScale, 2 ) ) + ( 2.0 * this.scale * inner ); } /** * Calculates the inner product of the weights and supplied vector `x`. * * @private * @param {NumericArray} x - input vector * @returns {number} inner product */ function innerProduct( x ) { /* eslint-disable no-invalid-this */ var ret = 0; var i; for ( i = 0; i < x.length; i++ ) { ret += this._data[ i ] * x[ i ]; } ret += ( this.intercept ) ? this._data[ i ] : 0.0; ret *= this.scale; return ret; } // MAIN // /** * Creates a WeightVector. * * @constructor * @param {PositiveInteger} dim - number of feature weights (excluding bias/intercept term) * @param {boolean} intercept - boolean indicating whether a bias/intercept weight should be implicitly assumed * @throws {TypeError} first argument must be a positive integer * @throws {TypeError} second argument must be a boolean */ function WeightVector( dim, intercept ) { var i; if ( !(this instanceof WeightVector) ) { return new WeightVector( dim, intercept ); } if ( !isPositiveInteger( dim ) ) { throw new TypeError( format( 'invalid argument. First argument must be a positive integer. Value: `%s`.', dim ) ); } if ( !isBoolean( intercept ) ) { throw new TypeError( format( 'invalid argument. Second argument must be a boolean. Value: `%s`.', intercept ) ); } this.scale = 1.0; this.norm = 0.0; this.intercept = intercept; this.nWeights = dim + ( ( this.intercept ) ? 1 : 0 ); this._data = new Array( this.nWeights ); // Initialize weights to zero: for ( i = 0; i < this.nWeights; i++ ) { this._data[ i ] = 0.0; } } /** * Scale elements of the weight vector by the supplied factor. * * @memberof WeightVector.prototype * @function scaleTo * @param {number} factor - scaling factor * @throws {RangeError} `lambda` times `eta` must be large enough for the scaling weight to be nonnegative */ setReadOnly( WeightVector.prototype, 'scaleTo', scaleTo ); /** * Adds vector `x` to the weight vector after scaling its elements. * * @memberof WeightVector.prototype * @function add * @param {NumericArray} x - vector to add * @param {number} [xScale=1.0] - number to scale the elements of x with */ setReadOnly( WeightVector.prototype, 'add', add ); /** * Calculates the inner product of the weights and supplied vector `x`. * * @memberof WeightVector.prototype * @function innerProduct * @param {NumericArray} x - input vector * @returns {number} inner product */ setReadOnly( WeightVector.prototype, 'innerProduct', innerProduct ); // EXPORTS // module.exports = WeightVector;