UNPKG

@stdlib/ml

Version:

Machine learning algorithms.

103 lines (93 loc) 3.66 kB
/** * @license Apache-2.0 * * Copyright (c) 2018 The Stdlib Authors. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ 'use strict'; // MODULES // var isNonNegativeNumber = require( '@stdlib/assert/is-nonnegative-number' ).isPrimitive; var isPositiveNumber = require( '@stdlib/assert/is-positive-number' ).isPrimitive; var isBoolean = require( '@stdlib/assert/is-boolean' ).isPrimitive; var isObject = require( '@stdlib/assert/is-plain-object' ); var isString = require( '@stdlib/assert/is-string' ).isPrimitive; var hasOwnProp = require( '@stdlib/assert/has-own-property' ); var format = require( '@stdlib/string/format' ); // MAIN // /** * Validates function options. * * @private * @param {Object} opts - destination object * @param {Options} options - function options * @param {PositiveNumber} [options.epsilon] - insensitivity parameter * @param {PositiveNumber} [options.eta0] - constant learning rate * @param {PositiveNumber} [options.lambda] - regularization parameter * @param {string} [options.learningRate] - the learning rate to use * @param {string} [options.loss] - the loss function to use * @param {boolean} [options.intercept] - specifies whether an intercept should be included * @returns {(Error|null)} null or an error object * * @example * var opts = {}; * var options = {}; * var err = validate( opts, options ); * if ( err ) { * throw err; * } */ function validate( opts, options ) { if ( !isObject( options ) ) { return new TypeError( format( 'invalid argument. Options argument must be an object. Value: `%s`.', options ) ); } if ( hasOwnProp( options, 'epsilon' ) ) { opts.epsilon = options.epsilon; if ( !isPositiveNumber( opts.epsilon ) ) { return new TypeError( format( 'invalid option. `%s` option must be a positive number. Option: `%s`.', 'epsilon', opts.epsilon ) ); } } if ( hasOwnProp( options, 'eta0' ) ) { opts.eta0 = options.eta0; if ( !isPositiveNumber( opts.eta0 ) ) { return new TypeError( format( 'invalid option. `%s` option must be a positive number. Option: `%s`.', 'eta0', opts.eta0 ) ); } } if ( hasOwnProp( options, 'lambda' ) ) { opts.lambda = options.lambda; if ( !isNonNegativeNumber( opts.lambda ) ) { return new TypeError( format( 'invalid option. `%s` option must be a nonnegative number. Option: `%s`.', 'lambda', opts.lambda ) ); } } if ( hasOwnProp( options, 'learningRate' ) ) { opts.learningRate = options.learningRate; if ( !isString( opts.learningRate ) ) { return new TypeError( format( 'invalid option. `%s` option must be a string. Option: `%s`.', 'learningRate', opts.learningRate ) ); } } if ( hasOwnProp( options, 'loss' ) ) { opts.loss = options.loss; if ( !isString( opts.loss ) ) { return new TypeError( format( 'invalid option. `%s` option must be a string. Option: `%s`.', 'loss', opts.loss ) ); } } if ( hasOwnProp( options, 'intercept' ) ) { opts.intercept = options.intercept; if ( !isBoolean( opts.intercept ) ) { return new TypeError( format( 'invalid option. `%s` option must be a boolean. Option: `%s`.', 'intercept', opts.intercept ) ); } } return null; } // EXPORTS // module.exports = validate;