UNPKG

@stdlib/ml

Version:

Machine learning algorithms.

60 lines (48 loc) 1.69 kB
/** * @license Apache-2.0 * * Copyright (c) 2018 The Stdlib Authors. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ 'use strict'; // MODULES // var regularize = require( './../regularize.js' ); // MAIN // /** * Given a new observation `(x,y)`, updates the weights using the epsilon-insensitive loss. * * ## Notes * * The penalty of the epsilon-insensitive loss is the absolute value of the dot product of the weights and `x` minus `y` whenever the absolute error exceeds epsilon, and zero otherwise. * * @private * @param {WeightVector} weights - current model coefficients * @param {NumericArray} x - feature vector * @param {number} y - response value * @param {PositiveNumber} eta - current learning rate * @param {NonNegativeNumber} lambda - regularization parameter * @param {PositiveNumber} epsilon - insensitivity parameter */ function epsilonInsensitiveLoss( weights, x, y, eta, lambda, epsilon ) { var p = weights.innerProduct( x ) - y; // Perform L2 regularization... regularize( weights, lambda, eta ); if ( p > epsilon ) { weights.add( x, -eta ); } else if ( p < -epsilon ) { weights.add( x, +eta ); } } // EXPORTS // module.exports = epsilonInsensitiveLoss;