UNPKG

@stdlib/ml

Version:

Machine learning algorithms.

66 lines (53 loc) 1.63 kB
/** * @license Apache-2.0 * * Copyright (c) 2018 The Stdlib Authors. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ 'use strict'; // MODULES // var norm = require( './standardize.js' ); // MAIN // /** * Normalizes matrix elements by standardization. * * @private * @param {ndarray} mat - matrix to normalize * @param {Float64Array} stats - strided array containing the mean and standard deviation along each dimension * @returns {ndarray} input matrix */ function standardize( mat, stats ) { // TODO: eventually remove this function once project has implemented comparable functionality as a standalone package var mbuf; var sm1; var sm2; var om; var M; var N; var i; mbuf = mat.data; M = mat.shape[ 0 ]; N = mat.shape[ 1 ]; sm1 = mat.strides[ 0 ]; sm2 = mat.strides[ 1 ]; om = mat.offset; for ( i = 0; i < M; i++ ) { // Normalize a matrix row: norm( N, mbuf, sm2, om, stats, 2, 0, stats, 2, 1 ); // Magic numbers come from knowing that the `stats` array is interleaved // Update the index offset to point to the next row: om += sm1; } return mat; } // EXPORTS // module.exports = standardize;