UNPKG

@stdlib/ml

Version:

Machine learning algorithms.

63 lines (54 loc) 1.76 kB
/** * @license Apache-2.0 * * Copyright (c) 2018 The Stdlib Authors. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ 'use strict'; // MAIN // /** * Normalizes a vector by standardization. * * @private * @param {NonNegativeInteger} N - number of elements * @param {NumericArray} X - strided array * @param {integer} strideX - stride * @param {NonNegativeInteger} offsetX - index offset * @param {NumericArray} mean - strided array containing the sample mean along each dimension * @param {integer} strideM - stride * @param {NonNegativeInteger} offsetM - index offset * @param {NumericArray} stdev - strided array containing the standard deviation along each dimension * @param {integer} strideS - stride * @param {NonNegativeInteger} offsetS - index offset * @returns {ndarray} input array */ function standardize( N, X, strideX, offsetX, mean, strideM, offsetM, stdev, strideS, offsetS ) { // eslint-disable-line max-len var xi; var mi; var si; var i; // TODO: consider moving to an "extended" BLAS package xi = offsetX; mi = offsetM; si = offsetS; for ( i = 0; i < N; i++ ) { X[ xi ] = ( X[ xi ] - mean[ mi ] ) / stdev[ si ]; xi += strideX; mi += strideM; si += strideS; } return X; } // EXPORTS // module.exports = standardize;