UNPKG

@stdlib/ml

Version:

Machine learning algorithms.

67 lines (54 loc) 1.62 kB
/** * @license Apache-2.0 * * Copyright (c) 2018 The Stdlib Authors. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ 'use strict'; // MODULES // var sqrt = require( '@stdlib/math/base/special/sqrt' ); // MAIN // /** * Normalizes a vector. * * @private * @param {NonNegativeInteger} N - number of elements * @param {NumericArray} X - strided array * @param {integer} strideX - stride * @param {NonNegativeInteger} offsetX - index offset * @returns {NumericArray} input array */ function normalize( N, X, strideX, offsetX ) { // TODO: eventually remove this function once project has implemented comparable functionality as a standalone package (e.g., BLAS, which may avoid the naive approach susceptible to overflow/overflow due to summing squares and computing the square root) var xi; var m; var v; var i; m = 0.0; // Compute the vector magnitude... xi = offsetX; for ( i = 0; i < N; i++ ) { v = X[ xi ]; m += v * v; xi += strideX; } m = sqrt( m ); // Normalize the vector... xi = offsetX; for ( i = 0; i < N; i++ ) { X[ xi ] /= m; } return X; } // EXPORTS // module.exports = normalize;