UNPKG

@stdlib/ml

Version:

Machine learning algorithms.

85 lines (77 loc) 1.93 kB
/** * @license Apache-2.0 * * Copyright (c) 2018 The Stdlib Authors. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ 'use strict'; /** * Incrementally partition data into `k` clusters. * * @module @stdlib/ml/incr/kmeans * * @example * var Float64Array = require( '@stdlib/array/float64' ); * var ndarray = require( '@stdlib/ndarray/ctor' ); * var incrkmeans = require( '@stdlib/ml/incr/kmeans' ); * * // Define initial centroid locations: * var buffer = [ * 0.0, 0.0, * 1.0, 1.0, * 1.0, -1.0, * -1.0, -1.0, * -1.0, 1.0 * ]; * var shape = [ 5, 2 ]; * var strides = [ 2, 1 ]; * var offset = 0; * var order = 'row-major'; * * var centroids = ndarray( 'float64', buffer, shape, strides, offset, order ); * * // Create a k-means accumulator: * var accumulator = incrkmeans( centroids ); * * var out = accumulator(); * // returns {...} * * // Create a data vector: * buffer = new Float64Array( 2 ); * shape = [ 2 ]; * strides = [ 1 ]; * * var vec = ndarray( 'float64', buffer, shape, strides, offset, order ); * * // Provide data to the accumulator: * vec.set( 0, 2.0 ); * vec.set( 1, 1.0 ); * * out = accumulator( vec ); * // returns {...} * * vec.set( 0, -5.0 ); * vec.set( 1, 3.14 ); * * out = accumulator( vec ); * // returns {...} * * // Retrieve the current cluster results: * out = accumulator(); * // returns {...} */ // MAIN // var main = require( './main.js' ); // EXPORTS // module.exports = main;