@stdlib/ml
Version:
Machine learning algorithms.
85 lines (70 loc) • 2.28 kB
JavaScript
/**
* @license Apache-2.0
*
* Copyright (c) 2018 The Stdlib Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
;
// MODULES //
var incrmeanstdev = require( '@stdlib/stats/incr/meanstdev' );
var Float64Array = require( '@stdlib/array/float64' );
// MAIN //
/**
* Initializes incremental accumulators for computing the mean vector and associated standard deviation along each dimension.
*
* @private
* @param {PositiveInteger} ndims - number of dimensions
* @returns {Object} accumulators
*/
function incrstats( ndims ) {
var stride;
var nstats;
var acc;
var out;
var ob;
var i;
// Define the number of computed statistics:
nstats = 2;
// Create a single linear array in which to store accumulated statistics:
out = new Float64Array( ndims*nstats );
// Define the array buffer stride (in bytes):
stride = nstats * out.BYTES_PER_ELEMENT;
// Initialize accumulators which will write to sections of the linear array:
acc = [];
ob = 0;
for ( i = 0; i < ndims; i++ ) {
acc.push( incrmeanstdev( new Float64Array( out.buffer, ob, nstats ) ) );
ob += stride; // buffer offset
}
return accumulator;
/**
* If provided a data point vector, updates the mean vector and associated standard deviation along each dimension. If not provided a data point vector, returns the current mean vector and associated standard deviation along each dimension.
*
* @private
* @param {ndarray} [vec] - data point vector
* @returns {Float64Array} current mean vector and associated standard deviation along each dimension
*/
function accumulator( vec ) {
var i;
if ( arguments.length === 0 ) {
return out;
}
for ( i = 0; i < ndims; i++ ) {
acc[ i ]( vec.get( i ) );
}
return out;
}
}
// EXPORTS //
module.exports = incrstats;