UNPKG

@stdlib/ml

Version:

Machine learning algorithms.

64 lines (53 loc) 1.53 kB
/** * @license Apache-2.0 * * Copyright (c) 2018 The Stdlib Authors. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ 'use strict'; // MODULES // var sqrt = require( '@stdlib/math/base/special/sqrt' ); // MAIN // /** * Computes the Euclidean distance between two vectors. * * @private * @param {NonNegativeInteger} N - number of elements * @param {NumericArray} X - strided array * @param {PositiveInteger} strideX - stride * @param {NonNegativeInteger} offsetX - index offset * @param {NumericArray} Y - strided array * @param {PositiveInteger} strideY - stride * @param {NonNegativeInteger} offsetY - index offset * @returns {number} Euclidean distance */ function euclidean( N, X, strideX, offsetX, Y, strideY, offsetY ) { // TODO: remove and use BLAS implementation var xi; var yi; var d; var s; var i; xi = offsetX; yi = offsetY; s = 0.0; for ( i = 0; i < N; i++ ) { d = X[ xi ] - Y[ yi ]; s += d * d; xi += strideX; yi += strideY; } return sqrt( s ); } // EXPORTS // module.exports = euclidean;