UNPKG

@stdlib/ml

Version:

Machine learning algorithms.

80 lines (64 loc) 1.89 kB
/** * @license Apache-2.0 * * Copyright (c) 2018 The Stdlib Authors. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ 'use strict'; // MODULES // var gcopy = require( '@stdlib/blas/base/gcopy' ).ndarray; // MAIN // /** * Copies matrix elements to another matrix. * * ## Notes * * - Why not just use `gcopy` directly? Because `gcopy` 1) assumes only a single stride per strided array and 2) as we cannot assume that a source matrix is single-segment contiguous, we fall back to copying source matrix "chunks" (rows) to a destination matrix. Assuming the source matrix is row-major, then the implementation should be reasonably performant. * * @private * @param {ndarray} Y - destination matrix * @param {ndarray} X - source matrix * @returns {ndarray} destination matrix */ function copyMatrix( Y, X ) { // TODO: once an ndarray engine is written, determine whether this function can be replaced by a standalone package var xbuf; var ybuf; var sx1; var sx2; var sy1; var sy2; var ox; var oy; var M; var N; var i; M = X.shape[ 0 ]; N = X.shape[ 1 ]; xbuf = X.data; ybuf = Y.data; sx1 = X.strides[ 0 ]; sx2 = X.strides[ 1 ]; sy1 = Y.strides[ 0 ]; sy2 = Y.strides[ 1 ]; ox = X.offset; oy = Y.offset; for ( i = 0; i < M; i++ ) { gcopy( N, xbuf, sx2, ox, ybuf, sy2, oy ); ox += sx1; oy += sy1; } return Y; } // EXPORTS // module.exports = copyMatrix;