@stdlib/ml
Version:
Machine learning algorithms.
80 lines (64 loc) • 1.89 kB
JavaScript
/**
* @license Apache-2.0
*
* Copyright (c) 2018 The Stdlib Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
;
// MODULES //
var gcopy = require( '@stdlib/blas/base/gcopy' ).ndarray;
// MAIN //
/**
* Copies matrix elements to another matrix.
*
* ## Notes
*
* - Why not just use `gcopy` directly? Because `gcopy` 1) assumes only a single stride per strided array and 2) as we cannot assume that a source matrix is single-segment contiguous, we fall back to copying source matrix "chunks" (rows) to a destination matrix. Assuming the source matrix is row-major, then the implementation should be reasonably performant.
*
* @private
* @param {ndarray} Y - destination matrix
* @param {ndarray} X - source matrix
* @returns {ndarray} destination matrix
*/
function copyMatrix( Y, X ) { // TODO: once an ndarray engine is written, determine whether this function can be replaced by a standalone package
var xbuf;
var ybuf;
var sx1;
var sx2;
var sy1;
var sy2;
var ox;
var oy;
var M;
var N;
var i;
M = X.shape[ 0 ];
N = X.shape[ 1 ];
xbuf = X.data;
ybuf = Y.data;
sx1 = X.strides[ 0 ];
sx2 = X.strides[ 1 ];
sy1 = Y.strides[ 0 ];
sy2 = Y.strides[ 1 ];
ox = X.offset;
oy = Y.offset;
for ( i = 0; i < M; i++ ) {
gcopy( N, xbuf, sx2, ox, ybuf, sy2, oy );
ox += sx1;
oy += sy1;
}
return Y;
}
// EXPORTS //
module.exports = copyMatrix;