UNPKG

@stdlib/ml

Version:

Machine learning algorithms.

62 lines (54 loc) 1.56 kB
/** * @license Apache-2.0 * * Copyright (c) 2018 The Stdlib Authors. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ 'use strict'; /** * Incrementally perform binary classification using stochastic gradient descent (SGD). * * @module @stdlib/ml/incr/binary-classification * * @example * var Float64Array = require( '@stdlib/array/float64' ); * var array = require( '@stdlib/ndarray/array' ); * var incrBinaryClassification = require( '@stdlib/ml/incr/binary-classification' ); * * // Create an accumulator: * var accumulator = incrBinaryClassification( 3, { * 'intercept': true, * 'lambda': 1.0e-5 * }); * * // ... * * // Update the model: * var x = array( new Float64Array( [ 2.3, 1.0, 5.0 ] ) ); * var coefs = accumulator( x, 1 ); * // returns <ndarray> * * // ... * * // Create a new observation vector: * x = array( new Float64Array( [ 2.3, 5.3, 8.6 ] ) ); * * // Predict the response value: * var yhat = accumulator.predict( x ); * // returns <ndarray> */ // MODULES // var main = require( './main.js' ); // EXPORTS // module.exports = main;