UNPKG

@stdlib/ml

Version:

Machine learning algorithms.

153 lines (139 loc) 6.27 kB
/* * @license Apache-2.0 * * Copyright (c) 2021 The Stdlib Authors. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ // TypeScript Version: 4.1 /// <reference types="@stdlib/types"/> import { ArrayLike } from '@stdlib/types/array'; import { ndarray } from '@stdlib/types/ndarray'; /** * Interface defining function options. */ interface Options { /** * Regularization parameter (default: `1.0e-4`). */ lambda?: number; /** * Learning rate function and associated parameters (default: `['basic']`). * * ## Notes * * - Must be one of the following: * * - `['constant', ...]`: constant learning rate function. To set the learning rate, provide a second array element. By default, when the learn rate function is 'constant', the learning rate is set to `0.02`. * - `['basic']`: basic learning rate function according to the formula `10/(10+t)` where `t` is the current iteration. * - `['invscaling', ...]`: inverse scaling learning rate function according to the formula `eta0/pow(t, power_t)` where `eta0` is the initial learning rate and `power_t` is the exponent controlling how quickly the learning rate decreases. To set the initial learning rate, provide a second array element. By default, the initial learning rate is `0.02`. To set the exponent, provide a third array element. By default, the exponent is `0.5`. * - `['pegasos']`: Pegasos learning rate function according to the formula `1/(lambda*t)` where `t` is the current iteration and `lambda` is the regularization parameter. */ learningRate?: ArrayLike<any>; /** * Loss function (default: `'log'`). * * ## Notes * * - Must be one of the following: * * - `hinge`: hinge loss function. Corresponds to a soft-margin linear Support Vector Machine (SVM), which can handle non-linearly separable data. * - `log`: logistic loss function. Corresponds to Logistic Regression. * - `modifiedHuber`: Huber loss function variant for classification. * - `perceptron`: hinge loss function without a margin. Corresponds to the original Perceptron by Rosenblatt. * - `squaredHinge`: squared hinge loss function SVM (L2-SVM). */ loss?: 'hinge' | 'log' | 'modifiedHuber' | 'perceptron' | 'squaredHinge'; /** * Boolean indicating whether to include an intercept (default: `true`). */ intercept?: boolean; } /** * Accumulator interface. */ interface Accumulator { /** * If provided a feature vector and response value, the accumulator function updates a binary classification model; otherwise, the accumulator function returns the current binary classification model coefficients. * * @param x - feature vector * @param y - response value * @throws first argument must be a one-dimensional ndarray * @throws first argument must be a one-dimensional ndarray whose length matches number of features * @throws second argument must be either `+1` or `-1` * @returns model coefficients */ ( x?: ndarray, y?: number ): ndarray; /** * Predicts the response value for one or more observation vectors `X`. * * @param X - feature vectors * @param type - `label`, `probability`, or `linear` (default: `'label'`) * @throws first argument must be an ndarray whose last dimension matches number of features * @throws second argument must be compatible with the model loss function * @returns ndarray containing response values */ predict( x: ndarray, type?: 'label' | 'probability' | 'linear' ): ndarray; } /** * Returns an accumulator function which incrementally performs binary classification using stochastic gradient descent (SGD). * * ## Method * * - The sub-gradient of the loss function is estimated for each datum and the classification model is updated incrementally, with a decreasing learning rate and regularization of model feature weights using L2 regularization. * - Stochastic gradient descent is sensitive to the scaling of the features. One is advised to either scale each feature to `[0,1]` or `[-1,1]` or to transform each feature into z-scores with zero mean and unit variance. One should keep in mind that the same scaling has to be applied to training data in order to obtain accurate predictions. * - In general, the more data provided to an accumulator, the more reliable the model predictions. * * ## References * * - Shalev-Shwartz, S., Singer, Y., Srebro, N., & Cotter, A. (2011). Pegasos: Primal estimated sub-gradient solver for SVM. Mathematical Programming, 127(1), 3–30. doi:10.1007/s10107-010-0420-4 * * @param N - number of features * @param options - options object * @param options.lambda - regularization parameter (default: `1.0e-4`) * @param options.learningRate - learning rate function and associated parameters (default: `['basic']`) * @param options.loss - loss function (default: `'log'`) * @param options.intercept - boolean indicating whether to include an intercept (default: `true`) * @throws first argument must be a positive integer * @throws must provide valid options * @returns accumulator function * * @example * var Float64Array = require( '@stdlib/array/float64' ); * var array = require( '@stdlib/ndarray/array' ); * * // Create an accumulator: * var accumulator = incrBinaryClassification( 3, { * 'intercept': true, * 'lambda': 1.0e-5 * }); * * // ... * * // Update the model: * var x = array( new Float64Array( [ 2.3, 1.0, 5.0 ] ) ); * var coefs = accumulator( x, 1 ); * // returns <ndarray> * * // ... * * // Create a new observation vector: * x = array( new Float64Array( [ 2.3, 5.3, 8.6 ] ) ); * * // Predict the response value: * var yhat = accumulator.predict( x ); * // returns <ndarray> */ declare function incrBinaryClassification( N: number, options?: Options ): Accumulator; // EXPORTS // export = incrBinaryClassification;