@stdlib/math
Version:
Standard math.
145 lines (129 loc) • 3.5 kB
JavaScript
/**
* @license Apache-2.0
*
* Copyright (c) 2022 The Stdlib Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
;
// MODULES //
var isIteratorLike = require( '@stdlib/assert/is-iterator-like' );
var abs = require( './../../../../base/special/abs' );
var EPS = require( '@stdlib/constants/float64/eps' );
var isnan = require( './../../../../base/assert/is-nan' );
var isNumber = require( '@stdlib/assert/is-number' ).isPrimitive;
var format = require( '@stdlib/string/format' );
var validate = require( './validate.js' );
// VARIABLES //
var TINY = 1.0e-50;
// MAIN //
/**
* Evaluates the terms of a continued fraction.
*
* @param {Iterator} iterator - input iterator
* @param {Options} [options] - options
* @param {NonNegativeInteger} [options.iter=1e308] - maximum number of iterations
* @param {PositiveNumber} [options.tol] - tolerance at which to terminate further evaluation of the continued fraction
* @throws {TypeError} must provide an iterator
* @throws {TypeError} options argument must be an object
* @throws {TypeError} must provide validate options
* @returns {(number|null)} result
*
* @example
* var iterContinuedFractionSeq = require( '@stdlib/math/iter/sequences/continued-fraction' );
*
* // Create an iterator for generating continued fraction terms:
* var it = iterContinuedFractionSeq( 3.245 );
*
* // Reconstruct the original value from the terms:
* var v = iterContinuedFraction( it );
* // returns ~3.245
*/
function iterContinuedFraction( iterator ) {
var delta;
var opts;
var err;
var b0;
var o;
var C;
var D;
var f;
var b;
var i;
if ( !isIteratorLike( iterator ) ) {
throw new TypeError( format( 'invalid argument. Must provide an iterator. Value: `%s`.', iterator ) );
}
opts = {
'iter': 1e308,
'tol': EPS
};
if ( arguments.length > 1 ) {
err = validate( opts, arguments[ 1 ] );
if ( err ) {
throw err;
}
}
// Get the first iterated value...
o = iterator.next();
if ( o.done ) {
return null;
}
b0 = o.value;
if ( !isNumber( b0 ) || isnan( b0 ) ) {
return b0;
}
// Initialize parameters of the modified Lentz's algorithm...
f = b0;
if ( f === 0.0 ) {
f = TINY;
}
C = f;
D = 0.0;
// Evaluate the terms of the continued fraction...
i = 1;
while ( i < opts.iter ) {
// Get the next iterated value...
o = iterator.next();
if ( o.done ) {
break;
}
i += 1;
b = o.value;
if ( !isNumber( b ) || isnan( b ) ) {
f = NaN;
break;
}
// Use the modified Lentz's algorithm to find the next convergent...
D += b; // b_i + a_i*D_{i-1}, where a_i = 1.0 for all i
if ( D === 0.0 ) {
D = TINY;
}
C = b + ( 1.0/C ); // b_i + a_i/C_{i-1}, where a_i = 1.0 for all i
if ( C === 0.0 ) {
C = TINY;
}
D = 1.0 / D;
delta = C * D;
f *= delta;
// Check whether we can terminate computation...
if ( abs( delta - 1.0 ) <= opts.tol ) {
break;
}
}
if ( i <= 1 ) {
return b0;
}
return f;
}
// EXPORTS //
module.exports = iterContinuedFraction;