UNPKG

@stdlib/math

Version:
78 lines (61 loc) 1.96 kB
{{alias}}( x[, options] ) Returns an iterator which generates a list of all continued fraction terms which can be obtained given the precision of `x`. If an environment supports Symbol.iterator, the returned iterator is iterable. Parameters ---------- x: number Input value. options: Object (optional) Function options. options.iter: integer (optional) Maximum number of iterations. Default: 1e308. options.tol: number (optional) Tolerance at which to terminate further evaluation of the continued fraction. Default: floating-point epsilon. options.returns: string (optional) Specifies the type of result to return. Must be one of - terms: return continued fraction terms - convergents: return continued fraction convergents - *: return both continued fraction terms and their associated convergents as a two-element array. Default: 'terms'. Returns ------- iterator: Object Iterator. iterator.next(): Function Returns an iterator protocol-compliant object containing the next iterated value (if one exists) and a boolean flag indicating whether the iterator is finished. iterator.return( [value] ): Function Finishes an iterator and returns a provided value. Examples -------- // Return continued fraction terms... > var it = {{alias}}( 3.245 ); > var v = it.next().value 3 > v = it.next().value 4 > v = it.next().value 12 > v = it.next().value 4 > var bool = it.next().done true // Return continued fraction convergents... > it = {{alias}}( 3.245, { 'returns': 'convergents' } ); > v = it.next().value 3.0 > v = it.next().value 3.25 > v = it.next().value ~3.2449 > v = it.next().value 3.245 > bool = it.next().done true See Also --------