@stdlib/math
Version:
Standard math.
78 lines (61 loc) • 1.96 kB
Plain Text
{{alias}}( x[, options] )
Returns an iterator which generates a list of all continued fraction terms
which can be obtained given the precision of `x`.
If an environment supports Symbol.iterator, the returned iterator is
iterable.
Parameters
----------
x: number
Input value.
options: Object (optional)
Function options.
options.iter: integer (optional)
Maximum number of iterations. Default: 1e308.
options.tol: number (optional)
Tolerance at which to terminate further evaluation of the continued
fraction. Default: floating-point epsilon.
options.returns: string (optional)
Specifies the type of result to return. Must be one of
- terms: return continued fraction terms
- convergents: return continued fraction convergents
- *: return both continued fraction terms and their associated
convergents as a two-element array.
Default: 'terms'.
Returns
-------
iterator: Object
Iterator.
iterator.next(): Function
Returns an iterator protocol-compliant object containing the next
iterated value (if one exists) and a boolean flag indicating whether the
iterator is finished.
iterator.return( [value] ): Function
Finishes an iterator and returns a provided value.
Examples
--------
// Return continued fraction terms...
> var it = {{alias}}( 3.245 );
> var v = it.next().value
3
> v = it.next().value
4
> v = it.next().value
12
> v = it.next().value
4
> var bool = it.next().done
true
// Return continued fraction convergents...
> it = {{alias}}( 3.245, { 'returns': 'convergents' } );
> v = it.next().value
3.0
> v = it.next().value
3.25
> v = it.next().value
~3.2449
> v = it.next().value
3.245
> bool = it.next().done
true
See Also
--------